Emission Control and Air Quality Improvement at the 2008 Beijing Summer Olympic Games

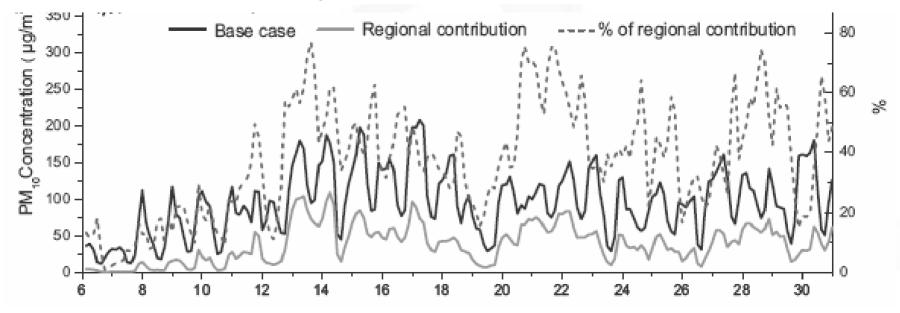
Jiming Hao Tsinghua University

2010-05-26

WFEO-CEE Technical Webinar #2

- Background Information
- **Source Attribution of Air Pollutants in Beijing**
- □ Air Pollution Control Measures during the Olympics
- Emission Reductions of Pollution Control Measures
- Monitoring of Air Quality Improvements
- **Summary**

Long-term efforts to improve Beijing's air quality

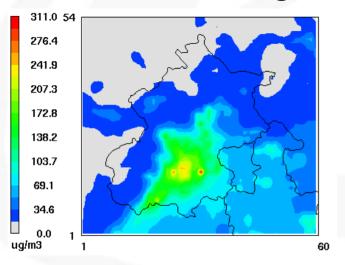

Since 1998, air pollution control measures in Beijing has been carried out in 14 stages, with more than 200 concrete steps

- □ In 2007, domestic natural gas usage reached 4.7 billion m³
- **Coal-fired power plants install FGD and SCR**
- Implementation of emission standard level IV on new vehicles
- More than 90 percent of buses meet level III emission standards
- Relocation of heavily polluting industries: Beijing Coking plant.....

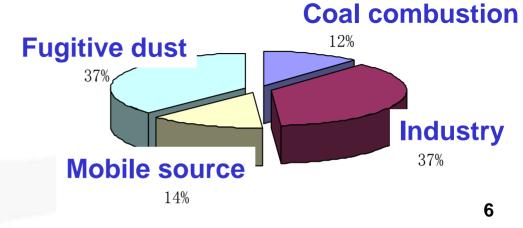
Urban air quality in Beijing improving before the Olympics

[mg/m ³]	SO ₂	NO ₂	СО	PM ₁₀	NAAQS II days	
2001	0.064	0.071	2.6	0.165	185	
2002	0.067	0.076	2.5	0.166	203	
2003	0.061	0.072	2.4	0.141	224	
2004	0.055	0. No	t meetin	g WHO':	s guidelines,	
2005	0.05	 more intensive pollution control needed 				
2006	0.053	0.066	2	0.161	241	
2007	0.047	0.066	2.0	0.148	246	
Changes	-26.56%	-7.04%	-23.08%	-10.30%	32.97%	

Model predicted PM₁₀ and its regional contributions in Beijing

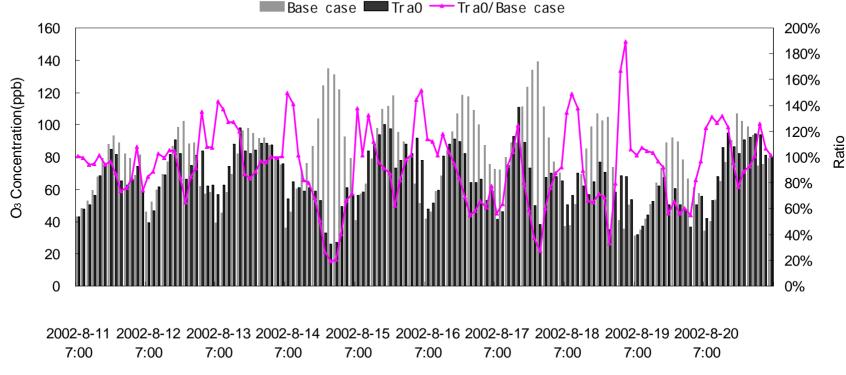


- In August, about 20%~40% of PM₁₀ concentrations came from regional sources
- In the heaviest pollution episodes, the local emission sources play a more important role
- To reduce baseline PM₁₀, regional sources need to be controlled; to reduce peak PM₁₀, local sources need to be controlled.


Industrial process and fugitive dust contribute 74% of PM₁₀ concentrations in Beijing

Emission control measures should target the two sectors

CMAQ Simulated PM₁₀ Concentrations. in August



Relative contributions from different sources

O₃ source attribution: contribution of different local sources

- Based on model sensitivity studies, in O₃ nonattainment hours
- Vehicle emissions contributed 17.8%~37.8%
- VOC evaporation contributed 8%~23.8%

Date

Air Pollution Control Measures before the Olympics

Eugitivo	Enhance emission control of construction sites					
Fugitive dust	95% of main roads in urban area and 60% of those in suburban areas will be cleaned as required					
Steel	Reduce production to 4 million tons in 2008					
Sleer	Install high efficiency dust collectors					
Cement	Close heavily polluted plants; reduce production to 8 million tons					
Chemical	Close Beijing Coking plant					
Chemical	Relocation of some chemical plants					
Power	Install FGD, SCR and high efficiency dust collectors					
Plant	Close Jingfeng power plant					
	Boilers <20t/h in urban areas change to clean energy; Boilers					
Industrial Boilers	<20t/h in suburban areas use low-sulfur coal and meet new emission standard					
	Boilers >20t/h install SO2 and TSP removal equipments and CEMS					

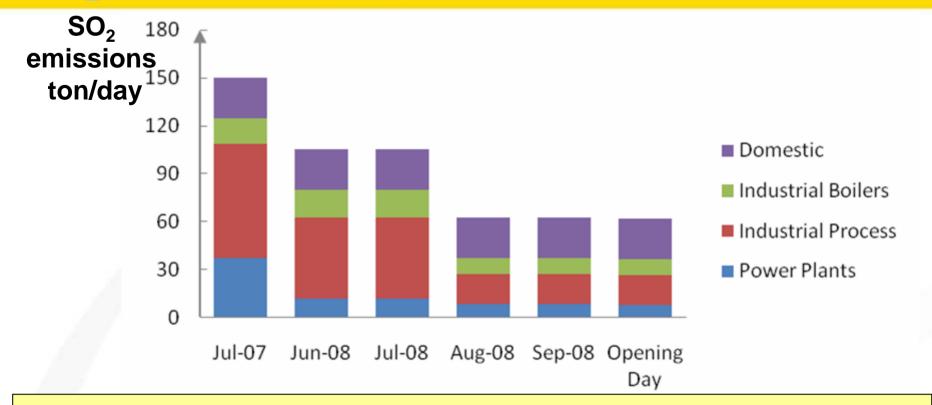
Air Pollution Control Measures before the Olympics

	Scrappage or retrofit of 4900 yellow-labelled vehicles in the government fleet before this June.
	Fleet renewal of 1500 buses and 2000 taxis by the end of last December
	Euro IV for all light duty gasoline vehicles since March 1
Vehicles	Euro IV for heavy duty diesel engines of bus, sanitation and postal fleets
	Supply of vehicle fuel with sulfur lower than 50ppm as Euro IV adopted
	Retrofit of fueling stations, fuel transport vehicles and fuel storage depot with VOC recovery system

Air Pollution Control Measures during the Olympics

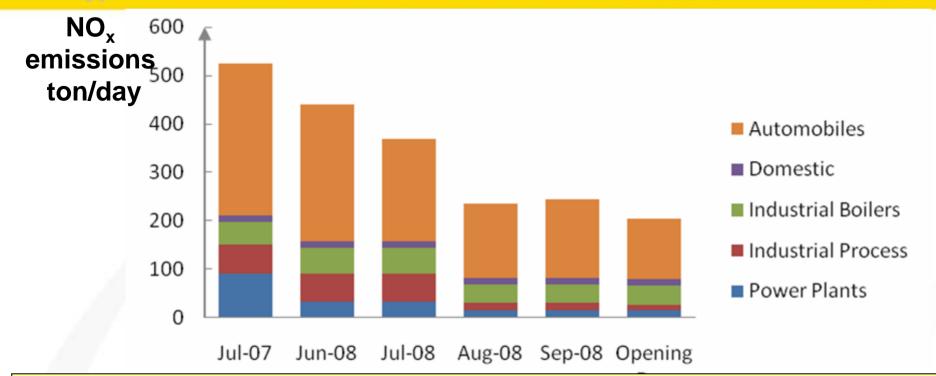
Fugitive du	st 🗖	Stop high polluting construction process 100% of urban roads and 60% of those in suburban areas will be cleaned				
Steel Stop heavy polluting smelting process		Stop heavy polluting smelting process				
Cement	nent Stop most of cement plants					
Chemical		Reduce pollutants emission by 30% in Beijng Yanshan Petro-Chemical Industry Corporation				
		Close some chemical plants				
Power Plant		Reduce pollutants emission by 30%				
Industrial boilers Execute strict emission standard and close non-attainment bo		Execute strict emission standard and close non-attainment boilers				
	Ban yellow-labeled vehicles in Beijing					
	Stop 70% government-owned vehicles					
Ban		olement an "even and odd number system" except 0~3 am				
		n most trucks from Beijing except those for transportation of daily living goods				
		cial lanes for Olympic vehicle on some main roads				

Effects of measures on coal-fired power plants


Power plant 1

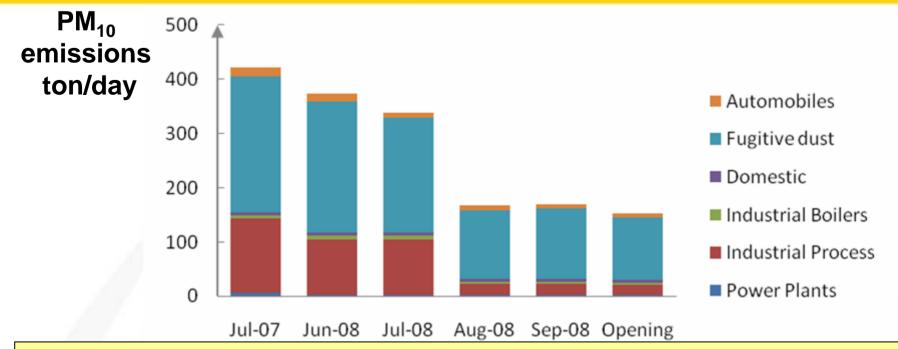
Power plant 2

Date	Coal use, ton	TSP mg/Nm ³	SO ₂ mg/Nm ³	NO _X mg/Nm ³	Date	Coal use, ton	TSP mg/Nm ³	SO ₂ mg/Nm ³	NO _X mg/Nm ³	
		2007						g/1 (
Jun 193156 14 37 284				2007						
20~Jul 19					Jul	172537	14.0	71.0	505 4	
Jul 20~Aug 20	209618	14	36	255	20~Aug 20	172537	14.8	71.8	505.4	
	2008					2008				
Jun 20~Jul 19	193618	10	27	144	Jul 20~Aug 20	225096	12.1	28.3	65.8	
Jul 20~Aug 20	206936	10	23	61	Standard		20	50	100	
Standard		20	50	100	L					


During Olympic Games, emissions from power plants reduced over 30%, much lower than that in 2007

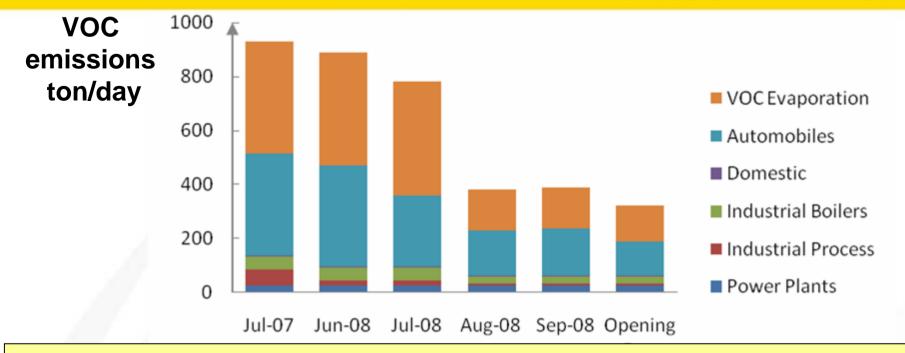
Emission Reduction of Control Measures: SO₂

During the Olympics, SO₂ emission reduced by 58% from July, 2007. Power plants and industrial process reduced by 78% and 74%, respectively.
Power plants and industrial process contribute 35% and 28% of the total SO₂ reductions, respectively.
During the Olympics, SO₂ emission reduced by 41% from June, 2008.
Stopping cement-production plants contribute 49% of emission reductions


Emission Reduction of Control Measures: NO_x

During the Olympics, NOx emission reduce by 55% from July, 2007. The mobile sources and the power plants reduce by 51% and 82%, respectively.
The mobile sources and the power plants contribute 56% and 26% of the total NOx reductions, respectively.

>During the Olympics, NOx emission reduced by 46% from June, 2008. The measures of limiting cars and closing cement-production plants contribute 63% and 20% of the total NOx reductions, respectively


Emission Reduction of Control Measures: PM₁₀

During the Olympics, PM10 emission reduce by 61% from July, 2007. The industrial process and the fugitive dust reduce by 86% and 49%, respectively.
The industrial process and the fugitive dust contribute 46% and 48% of the total PM10 reductions, respectively.
During the Olympics PM10 emission reduced by 56% from June 2008. The

>During the Olympics, PM10 emission reduced by 56% from June, 2008. The fugitive dust and the industrial process contribute 55% and 40% of the total PM10 reductions, respectively

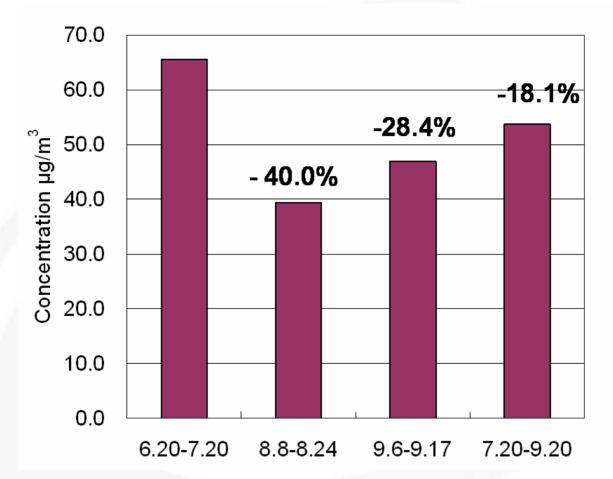
Emission Reduction of Control Measures: VOCs

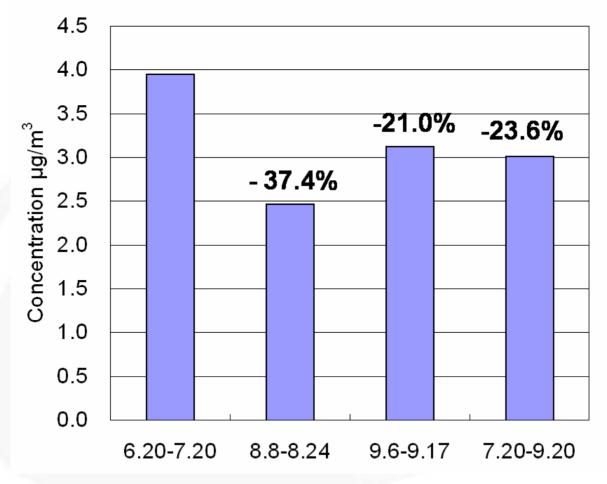
>During the Olympics, VOC emission reduce by 59% from July, 2007. The VOC evaporation and the cars' emission reduce by 63% and 56%, respectively.

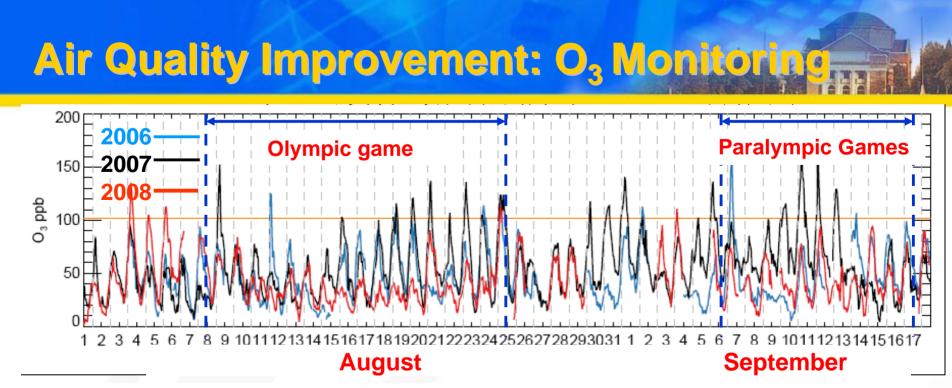
➤The VOC evaporation and the cars' reduction contribute 48% and 38% of the total VOC reductions, respectively.

>During the Olympics, VOC emission reduced by 57% from June, 2008. The VOC evaporation and the cars' reduction contribute 53% and 41% of the total VOC reductions, respectively

Monitoring of Air Quality during the Olympics



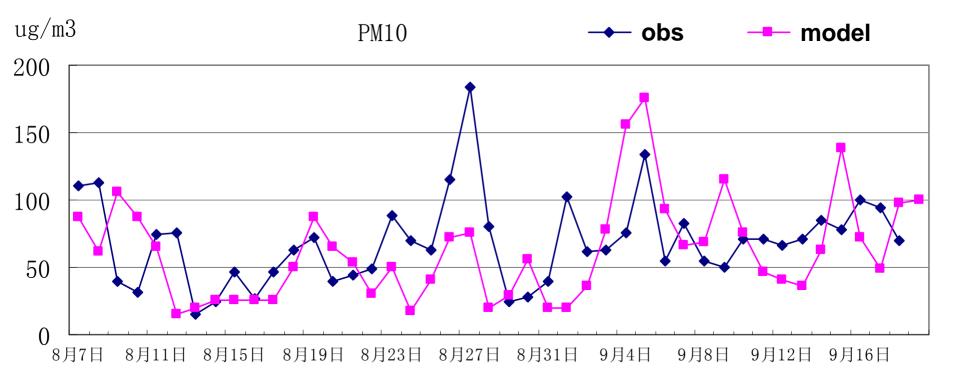

Air Quality Improvement: PM_{2.5} Monitoring


Instruments for PM_{2.5}: R&P and TEOM1400

Air Quality Improvement: BC Monitoring

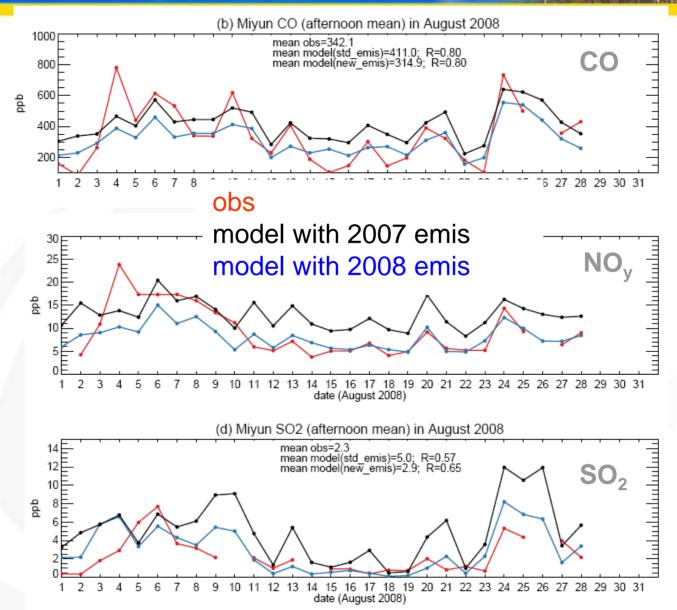
Change of BC concentrations

BC monitor: R&P Aethalometer Series 8100

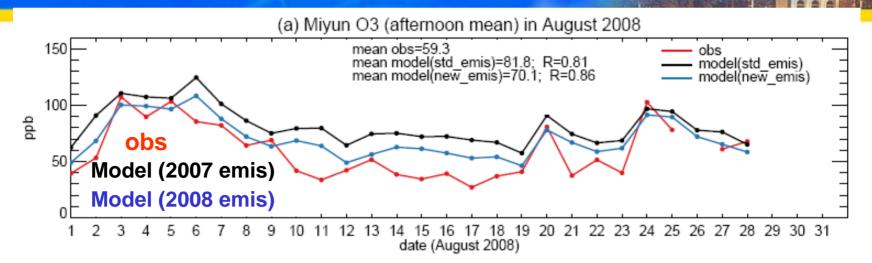

	8 Au	g - 24 Au	gust	6 Sep - 17 Sep			
daytime							
O_3	mean	maximum	#hrs >	mean	maximum	#hrs >	
0	(ppb)	(ppb)	102 ppb	(ppb)	(ppb)	102 ppb	
2006	58.8	131.8	20	59.1	156.8	9	
2007	66.8	152.2	30	72.2	167.6	22	
2008	41.7	114.6	3	50.4	94.1	1	
% diff. in 2008	-33. 7%	-19.3%	-88.0%	-23.3%	-42.0%	-93.5%	
ppb diff.							
in 2008	-21.2	-27.4	-22	-15.3	-68.1	-14.5	

Air Quality Improvement: other gases

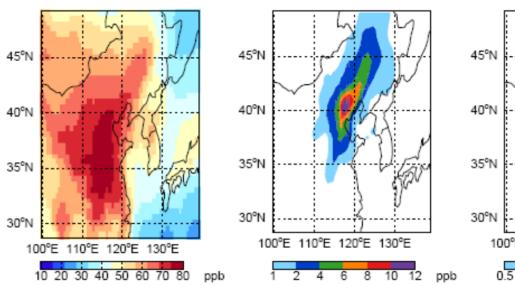
Miyun Observations for air masses coming from Beijing Urban Area


SSW,SW,S winds	August 2007 (ppb)	August 2008 (ppb)	Reduction (%)
SO ₂	6.2	2.4	61.3
СО	468	352	24.8
NOy	11.7	9.2	21.4
O ₃	78	58	25.6

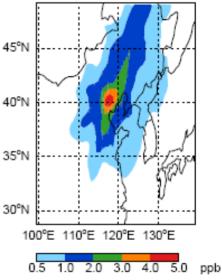
Air Quality Improvement: PM₁₀ Simulations


21

Air Quality Improvement: CO, NO, and SO, Simulations


22

Air Quality Improvement: O₃ Simulations


(a) PBL mean O3 (standard emis)

Regional impact on O₃ of the emission reductions

(b) O3 reductions in PBL

(c) O3 reductions in FT

Beijing has been improving its air quality since 1998.

About 20%~40% in PM₁₀ concentration could attribute to the emission sources outside Beijing

In Beijing:

- fugitive dust, industrial sources and coal-fired boilers are the most important sources for PM₁₀
- mobile sources and fugitive VOCs emissions are the most important source of O₃.

- Strict control measures were implemented during Olympic games, which reduced 58% of SO₂, 55% of NO_x, 61% of PM₁₀, and 59% of VOC emissions compared to that in July 2007
- Air quality were significantly improved during Olympic Games, of which PM₁₀ and O₃ concentrations were reduced ~40%
- Emission estimation and model simulation can basically catch the emission reduction and air quality changes

