World Engineering Day 2024 | Conference “Energy Transition and Sustainability”
Table of Contents

Preface
José Vieira, WFEO Immediate Past President

Engineering for Sustainable Development
Sebastião Feyo de Azevedo, President of the Portuguese Academy of Engineering, Portugal

Global Engineering Capacity Review 2024
Shane McHugh, Royal Academy of Engineering, United Kingdom

The Role of Engineering and Engineers in Energy Transition
GONG Ke, WFEO Past President, China

Portugal and the Energy Transition: Some Vital Strategic Questions
Clemente Pedro Nunes, Professor IST, Portugal

The Economic Sustainability of the Energy Transition
Luís Mira Amaral, Former Portuguese Minister of Industry and Energy, Portugal
Table of Contents

Enabling the Energy Transition: Infrastructure Requirements and Impacts on Economic Development. A case study from Sydney Australia

Marlene Kanga, WFEO Past President, Non-Executive Director, Endeavour Energy, Australia

Page 152

The challenges of renewable energy for sustainable agriculture regarding the SDGs of the 2030 Agenda

Ania López, WFEO Executive Vice-President, Consiglio Nazionale degli Ingegneri, Italy

Page 190

The Future of Nuclear Energy in Europe

Pedro Sampaio Nunes, Former Portuguese Secretary of State of Science and Innovation, Portugal

Page 209

A Just Transition to Sustainable Energy and a Net-Zero Future in Emerging Markets: The Case of Africa

Martin Manuhwa, WFEO Committee in Engineering Capacity Building and ZAIDG Consulting Engineers MD, Zimbabwe

Page 224

The Reinforcement of the Energy Interconnections and the Optimization of the Energy Markets in Europe

Marie-Line Vaiani, Secretary General, Conseil Français de l'Energie, France

Page 253

Photos & Video Gallery

Page 267
Preface

Prof. José Vieira, Lisbon, March 4th 2024

As the world’s largest association of international engineering organizations, WFEO, the World Federation of Engineering Organization, is committed to the implementation of the United Nations Sustainable Development Goals. It actively collaborates with national and international professional bodies to tackle both global and local challenges, leveraging pioneering engineering solutions and policy frameworks for the betterment of humanity.

Our world is experiencing unprecedented changes, marking a pivotal moment in history. We are facing numerous significant global crises. In such a context, the production and use of energy are, more than ever, at the centre of countries’ strategic considerations, not only due to the need for decarbonisation policies in energy systems, given the emissions of greenhouse gases and their impacts on climate change but also due to issues of energy autonomy and economic independence that COVID-19, armed conflicts, and epic geopolitical divisions have dramatically highlighted.

The overarching goal of the Paris Agreement, adopted at the UN Climate Change Conference (COP21), is to limit the increase in the global average temperature to a maximum of 2°C above pre-industrial levels, with a commitment to restrict this temperature increase to 1.5°C. It recognizes that the global energy crisis, beyond its impact on climate change, poses a significant challenge to efforts to achieve energy security. This underscores the urgency of transforming energy systems to be more reliable and resilient and the need to accelerate clean and fair transitions to renewable energy.

The theme "Energy Transition and Sustainability," besides its political, social, economic, and environmental implications, constitutes a significant matter requiring active involvement from the field of engineering.

The decommissioning of conventional fossil energy plants and the massive development of variable renewable energies can pose issues of continuity and quality in electricity supply. Backup power plants, cost-effective and efficient energy storage technologies, demand flexibility development, and electrical grid development will be necessary to overcome the variability of renewable energies. The issue of access to energy in general and electricity, in particular, remains a significant challenge in many regions of the world, requiring different responses for supplying large developing megacities and remote off-grid locations.

Engineering for sustainable development is especially critical in developing countries, to mitigate the effects of climate change, reduce poverty, and design relevant infrastructures and development models.

The implementation of scientific research and technological development projects in the field of energy systems engineering underlies industrial transformation, innovation, and global economic structure. Especially in the context of increasing tensions in the relationship between humans and nature, it is crucial for engineers and policymakers to adopt a balanced approach between economic progress, social justice, and environmental preservation, which is fundamental for a country’s energy security.

I welcome you to this pivotal conference on energy transition. Together, let us embark on a journey of collaboration and innovation, forging a path towards a more sustainable and prosperous future.

José M.P. Vieira (WFEO Immediate Past President)
Sebastião Feyo de Azevedo,
President of the Portuguese Academy of Engineering, Portugal
ENGINEERING FOR THE SUSTAINABLE DEVELOPMENT OF HUMANITY

Sebastião Feyo de Azevedo

President Portuguese Academy of Engineering (2022-)
President Municipal Assembly of Porto (2021-2025)
Rector, University of Porto (2014-2018)
Dean, Faculty of Engineering, University of Porto (2010-2014)
National Vice-president, Ordem dos Engenheiros (2004-2010)

Correspondence to sfeyo@fe.up.pt

UNESCO WFEO WORLD ENGINEERING DAY
March 4, 2024
Ordem dos Engenheiros
Lisbon, Portugal
The core of the message

1. Engineering for Development, since always... What evolution? And changes?

2. Thoughts/Ideas I share – Reform, adapt; The evolution of the knowledge spectrum; Values; Work and training models; Innovation and entrepreneurship; Talent retention and attraction

3. Support the dimension and relevance of Engineering with Engineering cases

Epilogue - Say what I said...
There is Engineering in everything around us... and outside in the World

☞ Affirm the vital role of Engineering in ensuring the future, in promoting the socio-economic development of Countries/Communities, for a sustainable development of Humanity;

☞ Affirm that the necessary increase in productivity and competitiveness, for any Nation or Community, is only feasible with the SYSTEMIC VISION and the CAPACITY OF DOING that characterize Engineering and the Engineers;

☞ Further affirm, on another level, that Engineering is a condition of the future, through its example of ORGANIZATION, QUALITY, AND RESPONSIBILITY, which is so badly needed in so many countries.

It is, therefore, crucial that institutions responsible for the development of Engineering commit themselves and impose themselves on the political level so that engineering is a much more integral part of the design and implementation of public policies.
We recognize four Industrial Revolutions, the result of the combination of essentially four factors:

- New energy sources
- Disruptive scientific and technological innovations, with an impact on production
- Human Resources capable of absorbing change
- A free market society, with investment incentives

From the steam engine of the 18th century... to the Artificial Intelligence of the 21st century, a sequence of *qualitative leaps*, of *so-called vertiginous changes* in the History of Humanity.

With Engineering always at the center of the (R)evolution.
Four Industrial Revolutions - human reaction along the times

- The steam engine and the age of steel, with locomotives and steamboats, allowed goods to be “massively exported around the world”.

- or the inventions of Thomas Edison (1847-1931) that “changed the world forever”

- Or the invention of transistors (1926, 1947) which opened “times of dramatic change”

- In fact, we find in literature many other quotes from the past with the same words we use today to characterize contemporary life.

BUT, speaking of the present, IT IS CLEAR

what is the nature, the basis, of the evolution of scientific and technological innovations that brought us the fourth industrial revolution
Moore's law: The number of transistors per microprocessor

The number of transistors that fit into a microprocessor. The observation that the number of transistors on an integrated circuit doubles approximately every two years is called Moore's law.¹

¹ Moore's law: Moore's law is the observation that the number of transistors in a dense integrated circuit doubles about every two years, because of improvements in production. Read more: What is Moore's Law?
Historical cost of computer memory and storage

This data is expressed in US dollars per terabyte (TB). It is not adjusted for inflation.

Data source: John C. McCallum (2022)
Note: For each year, the time series shows the cheapest historical price recorded until that year.
Computational capacity of the fastest supercomputers

The number of floating-point operations\(^1\) carried out per second by the fastest supercomputer in any given year. This is expressed in gigaFLOPS, equivalent to \(10^9\) floating-point operations per second.

Data source: TOP500 Supercomputer Database (2023)

1. Floating-point operation: A floating-point operation (FLOP) is a type of computer operation. One FLOP is equivalent to one addition, subtraction, multiplication, or division of two decimal numbers.
John Napier (1550 – 1617) – formulated the concept of Logarithm

William Oughtred (1574 – 1660) - based on the Theory of Logarithms and the concept of Logarithmic Scales, he developed the Slide Rule (?)

WELL, this Instrument, which really looks like it dates back to the ‘Paleolithic’, prevailed until 1973
The explosion of scientific calculation capacity
The ‘revolutionary’ FACIT mechanical machines (~1960 -)

What is (was) a FACIT..?
Which I learned to use in my father’s office, in 1959, and used at College in 1969, 1970...
AI is today a designation that covers all the methods and technologies that HUMAN BEINGS DEVELOP, with which they design Machines that mimic or independently simulate much of HUMAN ACTIVITY.

An immense set of applications, emerging every day……..

- Robots… increasingly ‘well trained’
- CHATBOTS – Virtual Assistants with ‘interactive conversations’
- CHATGPT.. and the new BING with associated CHATGPT
INDICATORS OF THE FOURTH INDUSTRIAL REVOLUTION—IV UNDER THE UMBRELA OF ARTIFICIAL INTELLIGENCE (II)
INDICATORS OF THE FOURTH INDUSTRIAL REVOLUTION—IV UNDER THE UMBRELA OF ARTIFICIAL INTELLIGENCE (III)

The Guardian, 6 September, 2019
THOUGHTS AND IDEAS I SHARE....

- Open mind, Reform, Adapt
- The evolution of the spectrum of knowledge
- Values
- Models of work and of Education
- Innovation and Entrepreneurship
- Retention and attraction of talents
We are in the midst of the Fourth Industrial Revolution, in times of social and economic changes that new technologies, particularly those that use Artificial Intelligence, introduce into our lives, into our daily lives.

I completely dedramatize this evolution felt today, which I view, in fact, with great expectations.

- Today, we live in times of changes … as others have lived before
- Simply, we have to be up to date… as others have had to be before
- He have to adapt… like others have had before
- We have to maintain a critical spirit… as others have had to maintain before
A THEMATIC LIST – TOPICS IN WHICH ENGINEERING HAS A FUNDAMENTAL SAY

i. Construction, housing and general infrastructure

ii. Agriculture and food

iii. Production of new materials

iv. Energy and climate

v. Environmental, economic and social sustainability

vi. Combating climate change and environmental threats

vii. Information and Communication Technologies

viii. Digital Transition

ix. Computing and processing of ‘Big Data’

x. Artificial Intelligence Methods

xi. Innovation and emerging technologies in areas such as microelectronics, robotics, genetic engineering... and others that still have no face

xii. The paths of the energy transition

xiii. Electrification in transport, industry... and beyond...

xiv. Major problems associated with the scarcity of natural resources – WATER at the top

xv. Science and Innovation

xvi. The Organization and Management of the Territory

xvii. Social Integration

xviii.....
Values, today, as yesterday... in the understanding of the times...

Trust - In free, market Societies, Trust is the most important value to guarantee Development - without Trust, Society falls apart

- associated with the perception of stakeholders, concerning our quality, organization, rigor, stability, and ethics

Ethics - The most discussed of values... since the Philosophers of Ancient Greece, nowadays involving respect and courage in assuming professional and moral responsibilities, always in a transparent way

Ambition - of a different nature, a very important state of mind, for a Nation/Community to have a future, obviously thinking of the global competitive World of Today
MODELS OF WORK... AND TRAINING

- Work and training in hybrid mode
- Work and training increasingly dematerialized
- Requirement to adapt spaces, in companies and training institutions
- Perception of the multidisciplinary nature of practically all processes, leading to the requirement of multidisciplinary Teams
- Perception of the requirement for multiculturalism,
 - the ‘World has shrunk’, World cultures are closer than ever… in real-time
- Perception that we live in a 24/7 World, with the appropriate adaptation of work organization

Adapt the critical spirit to current communication models and AI instruments – Critical Spirit that has always been required throughout times
Science for Humanity – the example of the fight against the COVID-19 pandemic

Today, the degree of development of Science in a country says all about the country's state of development, particularly its competitive capacity

It is important to implement public policies, aiming to incorporate Knowledge, particularly in the form of Innovation, in the Productive Market – Valuing Knowledge

- Increase Projects, involving ‘Research Institutions – Industry’
- Promote PhDs with Industry
- Promote the insertion of doctorates directly into the productive fabric
- Promote entrepreneurship – support Science and Technology Park, Technology Valorization and Transfer Centers, and other institutions aimed at starting companies

Globally - bring Scientists to the Market;
Value Knowledge in a tangible way
Talent Retention and Attraction

As relevant as tough social and political objectives in all Countries

For Portugal, retaining and attracting Portuguese, EU Nationals, Nationals of Portuguese-speaking Countries and Nationals of Third Countries is today identified as a major policy for development

✓ Young Portuguese are generally very well trained in Engineering
✓ Availability and motivation to go abroad is high, namely for European Countries
✓ Currently 30% of young people born in Portugal work somewhere in this World, out of Portugal!

So, create and/or improve conditions of attractiveness

✓ Of course, promoting salary improvements... for Young People, through various mechanisms ...
✓ Including strengthening major motivation and achievement initiatives – entrepreneurship...

Essentially - Young People must feel that their country, or the country where they are, is developing and that it will provide them with opportunities to achieve their goals/dreams
I rate that Engineering is publicly recognized as a major asset for our development – Engineering is doing well, within Portugal and all over the World

- Companies capable of competing internationally
- Excellent Higher Education in Engineering – young people well prepared
- Competitive high-level research

The issue is largely on the real capacity of our institutions/associations to be able to influence the design and implementation of public policies, namely, thinking of quality, education and the economy

- The Academy of Engineering
- Engineers Portugal (Ordem dos Engenheiros)
- Universities
- Industrial associations
Engineers Portugal is doing a fine job in promoting engineering - recognizing new areas of engineering, promoting quality, promoting internationalization, promoting lifelong learning, and fighting for adequate public policies.

- Currently, recognizes 17 specialties, 5 of them ‘new’ - Aeronautical and Space Engineering; Food Engineering; Biomedical Engineering; Engineering and industrial management; Safety and Quality Engineering.

- Promotes periodically in its Journal the discussion of major hot topics - Regional Development; Energy and Climate; Construction, Housing, and Infrastructures; Blue Engineering, a Sea of Opportunities; Food and Process Chain Engineering.

- Recently published “Engineering XXI” - an important publication that illustrates 144 notable engineering projects and works.

Engineers Portugal is undoubtedly a major asset for Portuguese Development.
Illustrating the Potential of Our Engineering – Case Study 1

A classical Engineering Project in its development
From the Lab to the Pilot, to the Plant

Today, ACS – Advanced Cyclone Systems,
Founder and Responsible - Prof. Romualdo Salcedo

- Cyclone systems for Gas-Solid separation, internationally recognized worldwide as of very high efficiency - solves many critical gas-solid separation problems
- History started at FEUP almost 40 years ago
- Project with solid scientific bases of separation processes, mathematical modeling and optimization
STARTED AT LAB LEVEL
Went through Pilot scale
Installation at SONAE, a major Portuguese industrial company
ENDED UP WITH INDUSTRIAL SCALE (II)

SSB – Brasil
188000 m³/h@150°C;
<100 mg/Nm³
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING
ACS - FACTS & FIGURES, AS OF TODAY...

- 23 workers – 2 PhDs, 20 with master (second cycle) degrees
- National Prize of Environmental Innovation, 2008; SME Lider em 2015, 2016, 2023
- 350 Customers
- 38 Countries
- 5 Continents
- 280 installations for emission control
- 120 installations for recovering valuable materials
- 95% of revenues, from exports
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING CASE STUDY 2

Another classical Engineering Project in its development
From the Lab to the Pilot, to the Field

Today, BERD, One Bridge, One Solution -
President and CEO - Prof. Pedro Pacheco

- History started in FEUP, almost 20 years ago
- Recognized among World Leaders in the area of Bridge Construction Methods and Solutions – movable scaffolding systems, with organic prestress
- Continued scientific investment - New SPIN-OFF “BRIDGE INTELLIGENCE & A.I.”
BERD
ONE BRIDGE, ONE SOLUTION

M1-70 SLOVAKIA – BRIDGE OVER THE DANUBE RIVER

PHOTO CREDITS D4RT
Multiple national and international awards

- In Portugal – COTEC Award
- In Europe - EUROPEAN STEEL BRIDGES AWARD

- 5 PCT Patents

- 1 Patent examined and granted in more than 60 countries

- Optimization of bridge solutions in several countries

- Frequent publication of scientific papers
PARTICULARLY RELEVANT PROJECT published in Structural Engineering International, with a reduction of more than 400,000 Ton of materials (~30%+) and ~28,000 Ton of CO2 emissions.

The M1-90-S movable scaffolding system operated in Turkey, in the construction of the deck of four viaducts of the Ankara – Sivas High-Speed Railway Line.

Set a world record by building 90 meter spans in just 12 days, using the in situ concreting method.
ELITE TEAM: APROX. 60 Workers
(5 PhD, +20 MSc)

CUSTOMERS / PROJECTS: 5 CONTINENTS

INCOME GROWTH > 16%/YEAR, FROM THE BEGINNING

WEIGHT OF EXPORTS > 95% OF BUSINESS VOLUME
(Hidden) Engineering in large rehabilitation/renovation projects

Rehabilitation of Super Bock Arena - Rosa Mota Pavilion

Lúciios – Engenharia e Construção
Coordination Eng. Filipe Azevedo
A Engenharia em grandes projetos de recuperação de Património.

Arquitetura e Engenharia no Super Bock Arena - Pavilhão Rosa Mota.

Coordenação de...
Engineering in large rehabilitation projects

Super Bock Arena - Rosa Mota Pavilion

Dome
Reinforcement of the main floor
The work on the roof - 1
The work on the roof - 2
Lower the lower floor - 1
Lower the lower floor - 2
Lower the lower floor - 3
Lower the lower floor - 4
Engineering in large rehabilitation projects

Super Bock Arena - Rosa Mota Pavilion

A new lower floor was born…
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING
CASE STUDY 4

(Hidden) Engineering in large rehabilitation/renovation projects

Arquitecture and Engineering in the Iconic century-old BOLHÃO Market

Coordination Prof. Arq. Nuno Valentim
Lúcios-Engenharia e Construção e ACA Engenharia &Construção
Teixeira Duarte – Engenharia e Construções S.A.
New lower floor for supply, logistics and technical support (cold storage and offices)
Illustrating the potential of our Engineering Case Study 5

Innovation and Entrepreneurship in Engineering

The Supercapacitors of C2C-NewCap

- Supercapacitors for mobility
- Significant reduction in truck operating costs and environmental costs
 - Savings on diesel consumption
 - Decrease in CO2 emissions
C2C NEW CAP
Charge to Change
GO-START
Energy Storage Solutions for Trucks
Spin-off from Universidade de Lisboa

Portugal
Hcad Orricc

2014

Fo"→dcd bQ;
• R"i Pcdío Sil:a
• A→díé Mão dc
Fcíío a→d
• Só→ia E"gé→io

Team

• 12 woíecíэ
• « PkKэ
• 7 E→gi→ccíэ
• 2 Píod"ctio→
Lcck→icia→э

500 m²

• Pilot Pla→ıt
• CapacitQ →ió
píod"cc 1000
cllэ / Qcaí
Battery type connectors
Easy Installation
Nickel & Carbon
Perfect combination
Aqueous electrolyte
Safe and non toxic
No need for a cell balancing system
Simple, reliable and robust
Go-Start

- An SME focused on research, development and production of Supercapacitors.
- Develops fundamental research in the area of materials for Supercapacitors
- Develops business in the area of Supercapacitors
- At European level – an immense business opportunity ~ 6.2 M trucks in circulation
- In 2023 – 50 Units installed
- For 2024 - 100 new Units are planned
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING

CASE STUDY 6

Innovation and Entrepreneurship in Engineering

Omniflow – Solutions for Smart Cities

Founded by Eng. Pedro Ruão

- Founded in 2012
- Head Office in Porto, PORTUGAL
- Patented technology, designed and built in the EU
- Active in 35 markets worldwide
IoT smart light, powered by solar and wind energy

Solution allows savings of over 90% in lighting

... and also integrates other features such as security cameras, air quality sensors, 5G/wifi and electric vehicle chargers
OMNIFLOW SMART POLE
Vertical wind turbine
Solar photovoltaic
Battery storage

AIR QUALITY SENSORS
CO, NO2, O3, PM, SO2, Noise level

CALL BUTTON
High quality video and audio
Facial recognition and other analytics possible

EV CHARGER
Mast integrated EV Charger

INTEGRATED SERVICES
Ultra efficient LED system
4 x IP cameras, full field of view
Wi-Fi | 5G | LTE Small Cell
Audio for PA
Edge computing
IoT cloud based control system
Landing & charging pad for autonomous drone

INTERACTIVE DISPLAY
Capacitive Touch Screen
Audio system
IMPLEMENTATION
+3000 Units
in 35 Countries

Team
21px

FINANCING
€4M

PATENTS
32 Granted
1 Pending

WEIGHT OF EXPORTS - ~70% OF BUSINESS VOLUME
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING
CASE STUDY 7

Innovation and Entrepreneurship in Engineering

I-Charging mobilidade elétrica s.a.

CEO Eng. Alberto Milheiro Barbosa

➢ They create technological products, reinforcing innovation, differentiation, design and quality, within the most sophisticated segments of infrastructure for electric mobility
A PIONEER EM DC FAST CHARGING

i-charging offers a comprehensive, leading product portfolio with output powers of up to 1,600 kW with relevant, internationally recognized, certifications

blueberry 50kW
blueberry FUSION 150kW
blueberry PLUS 50-600kW
blueberry CLUSTER 50-600kW
blueberry MAX 50-1,600kW
5 years
A successful journey

2019
• Join the Team
• Launching the blueberry project

2020
• Test Center
• Launching the blueberry family

2021
• CE blueberry certifications
• Starting production
• First deliveries
• Opening of USA offices
• First commissioning
• E-mobility Awards & German Design Award

2022
• New power unit 200 kW
• Eichrecht module B
• German Innovation Award
• New power unit 300 kW

2023
• Intertek ETL for EUA & Canada
• Launching blueberry FUSION
• Eichrecht module D
• Certification Plug & Charge
A GLOBAL SOLUTION

A global company with a blue-chip customer base and strong presence in key electric vehicle countries

30+ Countries

6 continents

3,150+ blueberries sold

100+ FTE’s

50+ FTE’s in R&D and Engineering

500+ Total MW sold

50+ Customers & Partners

Argentina
Australia
Brazil
Belgium
Dominican Republic
Egypt
France
Germany
Greece
Hungary
Koweit
India
Macau
Mexico
Morocco
Panama
Paraguay
Poland
Porto Rico
Portugal
Serbia
Slovenia
Spain
Thailand
Turkey
United Arab Emirates
United Kingdom
Uruguay
USA
i-charging é a líder tecnológica, lucrativa e de crescimento mais rápido em carregamento rápido DC

i-charging has been on an impressive growth trajectory since the launch of the first Blueberry fast charger in 2021.

Sales and EBITDA (M€)

- **FY21A**: 1
- **FY22A**: 11,7
- **FY23E**: 35

EBITDA Profitability in FY23

- **FY21A**: 11.7 x
- **FY22A**: 3.0 x
- **FY23E**: 3.3 x
Some examples

Antuã, Portugal
Punta Cana, Dominican Republic
Wittenheim, France
Montelimar, France
Albacete, Spain
Szeged, Hungary

more at www.i-charging.pt
more at www.i-charging.pt

Some examples

AUDI, UAE

Bangkok, Thailand

Atlanta, GA, USA

Montabaur, Germany

S. Paulo, Brazil

Mont-de-Marsan, France
more at www.i-charging.pt

Some examples

Ostrzeszów, Poland

Panama City, Panama

Athens, Greece

Bourgoin Jallieu, France

UK

Mealhada, Portugal
ILLUSTRATING THE POTENTIAL OF OUR ENGINEERING CASE STUDY 8

Innovation and Entrepreneurship in Engineering

SEAMORTECH
Founders Eng. Eva Sousa, Eng. Sofia Delgado (Spin Off - DEQ, FEUP)

- Make the desalination of seawater through reverse osmosis more environmentally friendly and profitable
 - Harness valuable minerals
 - Increase freshwater recovery efficiency
 - Minimize the impact of toxic brine discharge
The issue of water – one of the major strategic themes of the present

Water shortage

Cover page in major newspapers

12 January 2024
A TEAM OF SIX, WITH TWO FOUNDERS
VALUING RESOURCES FOR A SUSTAINABLE MARITIME ECONOMY

Cientistas portuguesas extraem minerais valiosos da salmoura que ninguém quer

O projecto das cientistas nasceu nos laboratórios da Faculdade de Engenharia da Universidade do Porto (FEUP) e, há dois anos, deu origem a uma spin-off chamada SeaMinerTech. "Foi um desafio que nos foi lançado pelo professor Adélvio Mendes", explica ao PÚBLICO Eva Sousa, referindo-se ao investigador da FEUP muito conhecido por apoiar a transição de novas tecnologias para o tecido industrial.

Solução criada por investigadoras do LEPABE permite obter minerais imprescindíveis na indústria farmacêutica, automóvel e eletrónica.

Eva Sousa e Sofia Delgado conheceram-se quando desempenhavam trabalho no âmbito dos respetivos teses de doutoramento no LEPABE / FOTO: DR
Reverse osmosis is currently the most promising desalination technology to address water scarcity. But...

Address the environmental problem

Unconscious discharge of brine into the oceans

Ecological disruption of the seawater food chain

142 million m3 of toxic brine daily
Opportunity
Valorization of brine minerals – why?

Concentration of minerals duplicates in brines resulting from inverse osmosis

Minerals that serve various industries (Pharmaceutical, Automotive, Eletronics...)

Market currently very dependent on non-European industries
Critical raw materials in the EU
Project’s final goal
Treat up to 600 m3 of toxic brine per hour

A 2-Step Production Process

Toxic brine → Membrane separation → Enriched Pretreated brine → Thermochemical Reactor → Mineral Production

Water → Residual water

The Solution
Valuing resources for a sustainable maritime economy

Pilot scale experiment
Semi-industrial application contracted in an Industrial Desalination Plant (private) in the Algarve, with the expected treatment of 30 m3/day of brine

For 2024
Bring Engineering to cooperate more in the design of policies

Give Engineering the responsibility to

make and implement these policies on the field
Shane McHugh
Royal Academy of Engineering, United Kingdom
The Engineering X Global Engineering Capacity Review 2024

Shane McHugh
Royal Academy of Engineering, UK
Engineering X Skills for Safety

• £5m partnership with Lloyd’s Register Foundation to improve the promotion of skills for safety
• Identifying and empowering champions of engineering safety skills
• Understanding the global engineering safety skills landscape and mapping how engineering skills and economic growth intersect
Global Engineering Capability Review

Review was developed to answer three key questions:

• Where is the most harm or risk of harm due to unsafe engineering practices? Where will this be in the future?

• What engineering safety skills are specifically needed?

• How do we create engineers with the skills to reduce harm and increase safety in their countries?
Methodology

Index measures capability based on 76 indicators clustered in 10 capacity areas, owned by three stakeholder groups.
Index measures engineering capacity of 115 countries. Clustered in groups rather than ranked, ranging from Most Adequate (Green) to Not Adequate (Red), where risk of harm due to unsafe engineering practices is very high.
Mapping capability index to engineering outcomes index
Key Findings

• Strong evidence that investing in engineering capacity directly links to safety outcomes, and is a leading indicator of improvements or problems
• All countries have strengths in some areas - 47 different countries have exemplary capacity in at least one of the 10 key capacity areas.
• Every region has at least one country with good capacity, strong indication of the value of regional based partnerships to improve safety.
• Global need to improve engineering partnerships – and for better evidence on the kinds of partnerships that are most effective.
Emerging areas of focus

• Six case studies explore 21st century engineering skills needs around global sustainability and emerging technologies.
• Areas addressed include safe and sustainable mining, achieving energy transition, decommissioning of renewable energy infrastructure, AI, continuous learning opportunities, and data collection for the SDGs.
• Facilitating knowledge sharing among engineering communities- and potentially identifying new Engineering X challenges.
Impact on Sustainability Challenges

- Launching major new collaboration on Open Burning to mark World Engineering Day for Sustainability
- Global consortium led by Engineering X has received $1.3m funding from UNEP’s Climate and Clean Air coalition to help end open burning of waste
- Two year project will produce three roadmaps for phasing out of open burning in Africa, Asia and Latin America & the Caribbean, and will pilot each within one city in the region.

Dandora dumpsite, Nairobi 2023
Call for action

• Bookmark our webpage with the QR code opposite
• Download the report and use interactives to
• Share it with your national stakeholders, and promote it to guide investment in engineering skills
• Help us improve the accuracy and availability of data to build a better picture of the engineering skills that underpin social and economic growth
Gong Ke
WFEO Past President, China
Energy related human activities (most of which are Engineering related) are responsible to climate change.

Nature has issued a code red alert

Global surface temperature changes (annual average) observed and simulated using both human and natural factors, as well as only natural factors.

Engineering activities are a significant part of the “HUMAN ACITIVITIES” increasing the Global surface temperature.

All engineering activities are dealing with energy.
Engineers’ role is crucial in energy transition

1. Because engineers are crucial in energy generation, transmission, distribution and application.

2. Because engineering practices are dealing with energy and related greenhouse gas emission.

3. While engineering works rely on energy, energy transition relies on engineering and engineers.
Engineers’ contributions in transforming energy

➢ Electrical, mechanical and environmental engineers have been central to the development of low-cost renewable energy solutions, including wind, solar, wave and geothermal energy, all of which provide access to electricity in remote regions while mitigating the impacts of climate change.

➢ Household energy generation and distribution, mini-grids and smart grids are all innovations developed by electrical, electronics, mechanical and telecommunications engineers that are transforming access to energy while reducing environmental impacts.

➢ Advances in energy storage are making sources of reliable energy accessible and affordable.

- the UNESCO Engineering Report: *Engineering for Sustainable Development*

However, for transition away from fossils, engineers need to do more.
Engineers are to increase our awareness of the goal of energy transition

➢ The UN SDG 7: **Ensure access to affordable, reliable, sustainable and modern energy for all**

1. By 2030, ensure universal access to affordable, reliable and modern energy services
2. By 2030, increase substantially the share of renewable energy in the global energy mix
3. By 2030, double the global rate of improvement in energy efficiency.

To meet the challenge of ensuring the energy transition benefiting of all the people, especially those 800 million people without modern energy services.
Engineers are to integrate digital technologies in electrification to empower the energy transition.

Digital technology has great potential in increasing the efficiency, stability, safety and reliability.

Engineers should have the capability to make full use the proper digital technologies to increase the efficiency, stability, safety and reliability in energy services and applications.
Engineers are to further leveraging zero- and low-emission technologies to deepen the transition

The first global stocktake presented on the COP 28

- “further recognizes the need for deep, rapid and sustained reductions in greenhouse gas emissions in line with 1.5 °C pathways and calls on Parties to contribute to the following global efforts,...
 - Accelerating *zero- and low-emission technologies*, including, inter alia, renewables, nuclear, abatement and removal technologies such as carbon capture and utilization and storage, particularly in hard-to-abate sectors, and low-carbon hydrogen production;......
 - Accelerating the reduction of emissions from road transport on a range of pathways, including through *development of infrastructure and rapid deployment of zero and low-emission vehicles*”.

Engineers should understand the carbon footprint of his/her engineering practice and master related skills to achieve zero or low-emission.
Furthermore, Engineers are to

ensure safe and stable energy supply during the transition

- The challenges come from
 - Volatility of *renewable energy supply*;
 - Complexity of coordinating online supply, consumption and maintenance systems of renewable energy.

ensure the transition adapting to regional circumstances and contexts

- Regional contexts differ in natural resources, disasters and risks;
- COP28 stressed “that strategies related to just transition and economic diversification should be implemented *taking into account different national circumstances and contexts*”.

And,
Engineers’ role is to make the energy transition away from Fossil Fuels a reality

- On the COP28, nearly 200 countries for the first time recognized the need to transition away from fossil fuels.
- “Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep and sustained emissions reductions and secure a liveable and sustainable future for all.”

--- CLIMATE CHANGE 2023 Synthesis Report Summary for Policymakers-IPCC

- UN SG António Guterres emphasized that the era of fossil fuels must end with justice and equity. “The Global Stocktake must offer a clear plan for a tripling of renewables, a doubling of energy efficiency and a single-minded focus on tackling the root cause of the climate crisis – fossil fuel production and consumption.”

Engineers’ role is to implement the plan, and to solve the problem by engineering practices!
Energy transition is imperative and of great urgent to sustain humankind and the planet. All engineers are responsible to this comprehensive energy revolution in every engineering position.

To take on their role in energy transition, Engineers should have a strong sense of social responsibility to fully understand their role in energy transition, and strive to improve their professional capabilities.

WFEO unites all engineers, men and women, to engage into the energy transition with responsible and innovative engineering practices.
Clemente Pedro Nunes
Professor IST, Portugal
“Portugal and the Energy Transition: Some Vital Strategic Questions”

UNESCO WFEO World Engineering Day

Conference “Energy Transition and Sustainability”

Ordem dos Engenheiros

Lisboa, 4 / March / 2024

Clemente Pedro Nunes: - Full Professor of Instituto Superior Técnico, Universidade de Lisboa
 - Investigador do CERENA
1. Portugal, the Energy Transition, and Economic Competitiveness

- **Engineers** have as their **mission** to use **Science and Technology** to promote **Projects** that **enhance** the **economic** and **social development**;

- As such, it is of the **utmost importance** that the **engineers** take good **note** of the **latest scientific** and **technological realities** that affect the current **Energy Transition**;
In Portugal, one of the main challenges to the economic viability of this transition, is related to its Electric System, that is currently based in intermitent power sources.

It is also very important to stress that Portugal is a member of the European Union, and as such our Electric System has to be articulated with those of the other European countries, and with the decisions of the European Commission.

In special with Spain, and also with France.
2. **An Historic Introduction to the Portuguese Electric System**

- The national **expansion** of the **Electrical System Network** only **occurred after WW II**, based on the **National Hydroelectric Plan** of Professor Ferreira Dias. **After 1960** this System was strengthened with fuel oil based **Power Stations** to guarantee the **stability** of the **electric supply**.

- **After** the two **oil shocks** of 1973/74 and 1980/81, Portugal prepared the **Energy Plan of 1983** that led to **two major decisions**:
 - refuse the introduction of **nuclear power**;
 - to base the **firm power** supply in **coal** and **natural gas** based power stations, **both** of which to be **imported**.
3. **The Revolution of the Intermitent Power Sources: The FIT – Feed In Tariffs**

- This Electricity System was subverted, from 2005 onwards, by the introduction of massive of intermitent sources, wind and solar;

- This “revolution of a new intermitent base” was introduced without the necessary preliminary studies to evaluate the cost / benefits of the several available alternatives, in order to optimize the overall economic competitiveness of the Electric System.
• Most “final energy products”, like diesel, natural gas or biomass, can be transported and stored in a relatively easy way, and can be used afterwards whenever the client request them;

• But electricity, which is basically an “electronic flow”, can not be directly stored;

• Which means that electricity “has always to be used in the moment when it is produced”;
• To guarantee the **profitability** of the **investment** of intermitent power sources, it was granted to them by the portuguese government the **contractual regime** of the FIT – Feed In Tariffs;

• The **FIT grants**, to those that benefit from them, **two decisive advantages**:
 – Whenever produced, they are **paid** at a **fixed price**, regardless of the **consumption** that prevails in each moment;
 – Besides, these intermitent powers are **entitled** to “expel” any **competition** from the **market**, even in the case that the **alternative** is much cheaper for the consumer.
4. **How an Unbalanced Electric System was Created**

- **Till 2011** were granted **FIT** to more than **6,000 MW** of **intermittent** power sources: **5,400** from **wind** and **600 MW** from **solar**;

- As the consumption in the “empty” hours in only **3,900 MW** in Portugal, the **backup** power sources have to **adjust** to the **intermittency** of **wind** and **solar**, with all the **surcharges** that this imply;

- Already in **2008** this situation was the **origin** of the **Tariff Debt of the Electrical Sector**, that remained **ever since**, despite the fact that the Portuguese government promised in 2011, to the Troika, that it would be fully paid till 2020;
And more ominous is the fact that ERSE, the Portuguese Energy Regulator, announced last December that this Debt is going to rise again to 2,000 million euros in 2024, and its payment is the responsibility of the consumers.

As these FIT were granted for 15 years, counted from the respective start-up, it means that till 2028 the System “will be held hostage” of two very serious consequences for the consumers:

- The backup power sources will have to continue to adjust to the intermitent nature of wind and solar;
- Any new electric production, including new and more efficient wind and solar power sources, shall be “expelled from the market” whenever the “old FIT decide”.
5. **Intermitent Power, Indirect Storage of Electricity and the Need of Guaranteed Power Backup**

- In order for the electricity production to be **adjusted** to the consumers requirements, there are **two alternatives**:
 - To **produce electricity when the consumers need it**, or,
 - To **instal a complex technological process** that is able to “**indirectly store electricity**”
In Portugal, the three alternatives that exist, or have already been proposed, for the “indirect storage of intermittent electricity”, are the following:

- To pump water upriver in hydroelectric dams, that will be turbined afterwards when it is required by the consumers;
- Reversible electrochemical reactors, commonly known as “batteries”;
- To produce, with the eventual surplus of electricity, an “intermediate chemical compound”, that will be later reconverted back into electricity when it will be necessary.

“Electrolytic Hydrogen” is the intermediate compound that was recently proposed by the Portuguese Government for this purpose.
6. **Eletrical Intermitency and Electrolytic Hydrogen**

Hydrogen, produced from the electrolysis of water, is "a tool to promote the indirect storage of intermitent electricity".

6.1 - *Electrolitic Hydrogen: Risks and opportunities*

- Electrolytic hydrogen is very *inefficient* in terms of energy and, besides, requires high purity water;
- It is very *difficult* that hydrogen reaches a high energy density in volume, since the respective condensation temperature is extremely low, -253 °C, and its liquification by compression needs very high pressures, of around 700 atmospheres;
• As such, very important preliminary technological developments are still needed in order for electrolytic hydrogen to be able to compete in the marketplace;

• Unfortunately, RCM nº 63/2020, of 14 August, that establishes seven targets to be achieved by electrolytic hydrogen till 2030, is not based in any type of economic analysis.
7. **The Evolution of Energy Sources in Portugal**

7.1 – **Electricity Imports**

- In Portugal, the value of liquid electricity imports have climbed in the last few years, having reached in 2022 an absolute high record.

As it can be seen in Table 1 below (Source DGE):

Evolution of the value of the Liquid Imports of Electricity in Portugal from 1998 to 2022 (in millions of Euros)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eletricidade</td>
<td>11</td>
<td>130</td>
<td>634</td>
<td>375</td>
<td>44</td>
<td>-172</td>
<td>-141</td>
<td>181</td>
<td>22</td>
<td>711</td>
<td>1659</td>
</tr>
</tbody>
</table>
Importações Portuguesas de eletricidade em M€
Fonte: DGEG
The liquid imports of electricity have risen from 181 million euros in 2019 to 1.659 million euros in 2022, which means that its value has been multiplied by 9!

This important bleeding of financial resources is regrettable, since Portugal disposes of 20,000 MW of installed power capacity, for a consumption of only 10,000 MW at “maximum consumption” hours and only 3,900 MW at “empty” hours.

What is the reason for this apparent nonsense?

With the closing down of the coal based power plants in 2021, Portugal can only use natural gas as a reliable power source and when possible, of hydric storage, in order to avoid blackouts.
In order to avoid the surcharges of the stop and go regime, that the backup power stations are forced due to the FIT granted to the intermittent power sources, it is preferable in many occasions, in terms of pricing, to use imports of electricity from Spain.

Spain that continues to have several “reliable power sources” based in coal, natural gas and nuclear, for instance.
7.2 - Evolution of the Imports of All Energy Sources

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carvão</td>
<td>164</td>
<td>261</td>
<td>455</td>
<td>342</td>
<td>231</td>
<td>248</td>
<td>356</td>
<td>143</td>
<td>-1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Petróleo e Derivados</td>
<td>1.224</td>
<td>3.233</td>
<td>(1) 5.881</td>
<td>(1) 5.059</td>
<td>(1) 4.035</td>
<td>(1) 2.289</td>
<td>(1) 3.440</td>
<td>(1) 3.368</td>
<td>(1) 2.031</td>
<td>(1) 3.043</td>
<td>(1) 6.410</td>
</tr>
<tr>
<td>Gás Natural</td>
<td>65</td>
<td>462</td>
<td>1.249</td>
<td>1.432</td>
<td>1.493</td>
<td>921</td>
<td>1.371</td>
<td>1.207</td>
<td>993</td>
<td>1.625</td>
<td>3.814</td>
</tr>
<tr>
<td>Eletricidade</td>
<td>11</td>
<td>130</td>
<td>634</td>
<td>375</td>
<td>44</td>
<td>-172</td>
<td>-141</td>
<td>181</td>
<td>22</td>
<td>711</td>
<td>1.659</td>
</tr>
<tr>
<td>Biomassas e Biocombustíveis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-71</td>
<td>-91</td>
<td>-66</td>
<td>-100</td>
<td>-155</td>
<td>-132</td>
<td>-41</td>
<td>-58</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1.464</td>
<td>4.086</td>
<td>(1) 8.219</td>
<td>(1) 7.137</td>
<td>(1) 5.712</td>
<td>(1) 3.220</td>
<td>(1) 4.926</td>
<td>(1) 4.744</td>
<td>(1) 2.914</td>
<td>(1) 5.342</td>
<td>(1) 11.831</td>
</tr>
</tbody>
</table>

(1) Não estão incluídas nestas estatísticas oficiais as significativas quantidades de combustíveis líquidos adquiridos em Espanha diretamente pelos consumidores (Fonte DGEG) +121,5%
Importações Portuguesas de energia em M€

Fonte: DGEG
Importação das fontes Portuguesas de energia em M€
Fonte: DGEG
• The evolution of the Overall Energy Imports of Portugal, presented in Table 2, is a decisive element for analysis of the competitiveness of our economy, and of the equilibrium of our external accounts.

• Besides the evolution of the Liquid Imports of Electricity that was already presented before, the evolution of the other items of the Overall Energy Imports between 1999 and 2022 also very troublesome.

• In fact, the Overall Energy imports of Portugal reached 11.831 million euros in 2022.

That is, almost 6% of our GDP!
• This also represents:
 - a huge increase of 121.5%, in relation to the 5.321 million euros of 2021.

 - an increase of 7.077 million Euros in relation to 2019, that was the last “normal year” before the pandemic.

 - a new absolute record, and 3.612 million euros above the previous record registered in 2008.

• It should be stressed the Overall Energy Bill of 2008 was one of the factors that led to the near – bankruptcy of 2011.
• If we analyse Table 2, we can see that the value **increase** of the **oil** and **natural gas imports** were also very relevant, besides electricity as already pointed out before.

• As such, and in **financial terms**, **coal** is a very **attractive alternative** to the imports of electricity and natural gas.

• It is then **understandable** the **decision** of **Spain** to **restart** the **coal** based power plants in **October 2021**, **contrary** to what **happened** in **Portugal** that **decided** to drastically **increase** the **dependence** on **natural gas**.
8. Proposals for the Optimization of the Electric System till 2045

8.1 – To be Carried out in Portugal

To optimize the Electric System, and to “integrate” the intermittent power capacities already installed, I put forward five proposals in order to promote economic competitiveness:

a) Keep in operation the natural gas based power stations till 2045 as part of the backup system, as Germany has already decided;

b) Increase urgently the electrical interconnections between France and the Iberian Peninsula till 8,500 MW, that is the more efficient way to “soften the intermittency” and to reduce the CO2 emissions within the European Electricity Market, as referred in 8.2 below;

c) Increase in 400 MW till 2030 the biomass based electricity capacity, thus strengthening the backup based in renewable and reliable power;
d) To **promote R+D Projects** on the main **alternatives** for the “**indirect storage of electricity**” in order to obtain reliable data concerning the best solution to be adopted for this purpose;

e) The sequence of the **three dams** that already exist in the river Zêzere – Cabril, Bouçã e Castelo de Bode – offers an **excellent opportunity** to install new **reverse pumping systems** in the first two dams, thus **strengthening** the “**national capacity to store intermitent electricity**” in Portugal, allowing for the maximized production of hydroelectricity **without reducing** the strategic **storage** for the supply of **drinking water** to the greater Lisbon region.

As the **concession** of the **Cabril dam** is up for **renewal**, it is very **urgent** to include this aspect in the ongoing negotiations.
8.2 – Electrical Interconnections within the European Union: Stable and Intermittent Power Capacities

- Portugal is a full member of the European Union and the optimization of its Electric System depends on the overall grid network in the European Union, and specially on the future strengthening of the interconnections between France and the Iberian Peninsula;

- Besides, and due to the strong electric interconnections that already exist between Portugal and Spain, the optimization of our Electric System has first of all take good note of what happens with the evolution of the electric production capacities that exist in Spain;
• As Portugal has chosen two types of intermittent power sources as its baseload, wind and solar, the dependence of its Electric System towards Spain has strongly increased after it was decided to close down in 2021 the coal based power plants that existed till then in Pêgo / Abrantes and Sines;

• Spain maintained several types of stable electric sources, that includes nuclear, coal and natural gas, which has indirectly contributed for a greater security of the electrical supply in Portugal. This “Spanish protection” has however triggered a drastic increase of the overall liquid imports of electricity from Spain;
• In order to promote economic competitiveness within the European Union, the intermitent capacities, wind and solar, need an important increase of the electric Interconnections;

• This is the only way to sell in the market, at competitive prices, the eventual excesses of intermitent short term electric productions. It allows also to have better access later on to stable electric productions when the intermitent sources disappear, and it is necessary to avoid “blackouts”;

• The construction under way of a new Electric Interconnection, in the Gulf of Biscay, that will increase these overall interconnections between France and Spain to 5,500 MW, is very positive.
• It is however necessary to take in consideration that this new connection is forecasted to be concluded only in 2028;

• As such, and as the Electricity Production and Distribution Networks in the European Union is vital for the Portuguese and European economic prosperity, this Conference on “Energy Transition and Sustainability”, that was organized today within the framework of the UNESCO WFEO World Engineering Day 2024, is so important.
Luís Mira Amaral
Former Portuguese Minister of Industry and Energy, Portugal
ÍNDICE

I. THE ENERGY TRANSITION

II. THE EUROPEAN ENERGY CRISIS

III. PORTUGUESE ENERGY SYSTEM UNDER THE IBERIAN FRAMEWORK
The world has seen several energy transitions: from wood to coal, from coal to oil, and from oil to oil and natural gas.

Today, in a context of decarbonisation:

- Emergence of intermittent renewable energies, wind and solar (solar thermal and photovoltaic panels)
- Launch of renewable gases, such as hydrogen and biomethane, as non-fossil alternatives to natural gas.
I-THE ENERGY TRANSITION

Previous energy transitions have been led by the market in a decentralised approach between producers and consumers.

With a gradual transition in which emerging forms of energy are assisted in their development by existing forms of energy.

Nowadays, transition is being led in an enlightened way by the visible hand of political power.

Particularly in the European Union and the USA, where the aim was to do away with incumbent energies overnight, replacing them abruptly and hastily, an approach that is not realistic.

This political approach raises serious questions about the economic and social sustainability of the transition.

It could well be said that the aim was not an energy transition, as in the past, but a genuine energy disruption!
We are also witnessing a resurrection of nuclear energy for the following reasons:

- Along with wind power, it is one of the lowest emitters of CO2 per unit of energy produced, which makes it attractive in a decarbonisation context.

- It has a high energy density (a lot of energy produced per space occupied) while wind and solar energy have a low energy density, which makes it unrealistic in terms of space occupation to completely replace nuclear energy with wind and solar power.

- It’s a reliable and stable energy source, well adjusted to supply base-load consumption without the problems created by the intermittency of solar and wind power.

It is therefore common sense to recommend to countries that have nuclear power stations: keep them!
I-THE ENERGY TRANSITION

- This transition aims to eliminate fossil fuels but is highly intensive in mineral resources and rare metals to power wind and solar energy, batteries, fuel cells (FC), electric motors for both battery-powered vehicles (BEV-Battery Electric Vehicles) and hydrogen-powered fuel cell vehicles (FCEV-Fuel Cell Electric Vehicles), and in general all the electrification that is intended.

- Problems on the supply side, such as the scarcity of these mineral resources and rare metals, and dependence on areas of the world that we do not control, such as China, or the constraint of available space for renewables, will create serious supply shortages slowing down the pace of the transition, although the circular economy and recycling can alleviate this active constraint.
II-THE EUROPEAN ENERGY CRISIS

Before Ukraine invasion the world economy and namely Europe began to deal with the **first energy crisis under the decarbonisation framework**.

- Europe and USA underinvested in fossil fuels, oil, coal and natural gas
 - Underinvestment was made under the political commitment I explained before, and with after-Covid strong economic recovery the world demand for fossil fuels increased dramatically creating a big shortage of fossil fuels supply.
 - So the prices for coal, oil and natural gas increased dramatically.

- The Ukraine invasion exacerbated this energy crisis and has shown the dramatic dependence from Russia of European energy system
 - Namely the huge German dependence from Russia on natural gas.

- Europe launched after the war an energy diversification strategy from Russia, namely in natural gas, and tried to increase either the energy efficiency or the energy savings.
 - Under this diversification, US became the main liquified natural gas (LNG) exporter for Europe.
Portugal needs to have again a true energy planning system:

- with economic sustainability, not taking into account only the CO2 reduction (EU and Portugal account only for 7% and 0.11% of CO2 world emissions!)

- To deal with energy surplus of renewable sources, wind and solar, to have redundant power from classical power plants when wind doesn’t blow and sun doesn’t shine.

- To build, under the Iberian energy system, new electrical and natural gas connections between Spain and France to address the Iberian energy autarchy towards Europe.
In Portugal, and in the context of the energy transition with sound economic sustainability, a new government after the March 2024 elections should give priority

- Decentralised photovoltaic solar energy for domestic and industrial consumers who become prosumers, putting the brakes on mega-projects that are an attack on biodiversity and land use planning;

- Unblock the approval of projects under the Self-Consumption Production Units (Unidades de Produção para o Autoconsumo or UPACs) and Renewable Energy Communities (Comunidades de Energia Renovável or CERs), streamlining and simplifying this legislation;

- Freeze the megalomaniac tenders for offshore wind, at a time when this type of project is being called into question everywhere, with Portugal having no comparative advantages in this technology.
In Portugal, and in the context of the energy transition with sound economic sustainability, a new government after the March 2024 elections should give priority

- Redirect hydrogen projects from the unrealistic experimentalism of megaprojects to small demonstration projects and decentralised hydrogen projects for industrial consumers where electrification is difficult;

- Boost the production of biomethane
 As a solution to decarbonise natural gas as a complement to hydrogen, and low carbon content fuels as a quick and effective response to the decarbonisation of our stock of current car fleets;

- Boost lithium mining projects and support investment either in lithium refining projects or in the production of lithium-ion batteries that will enable us to build a value chain (from lithium to batteries) in Portugal

The aim is to support our automotive cluster, and in particular vehicle assembly/production units (namely VW Autoeuropa in Palmela and Stellantis/Citroen in Mangularde) in the transition to the electric vehicle;
III-PORTUGUESE ENERGY SYSTEM UNDER THE IBERIAN FRAMEWORK

In Portugal, and in the context of the energy transition with sound economic sustainability, a new government after the March 2024 elections should give priority

- Stimulate energy efficiency among domestic and industrial consumers;
- Support municipal councils either in switching to LEDs in public lighting systems or in investing in battery electric buses;
- Guarantee the permanence and operation of natural gas-fired power stations (CCGT-combined cycle gas turbines) as an indispensable backup to intermittent renewables when the sun doesn’t shine and the wind doesn’t blow.
And the last but not the least, under a long term framework, we should return to:

Real indicative economic planning in our power system, moving on from the National Energy and Climate Plans (*Planos Nacional Energia e Clima* or PNECs), which are basically nothing more than National Energy and Climate Intentions (*Intenções Nacionais de Energia e Clima* or INECs)..., taking into account only CO2 reductions, managing the production/consumption sides with minimum costs in the context of a global plan that would give it coherence, articulating interconnection and storage capacities with exports, production surpluses with pumping and other storage devices such as batteries, and economic analysis of the production cost/surplus cut (curtailment) binomial.
Marlene Kanga
WFEO Past President, Non-Executive Director, Endeavour Energy, Austrália
Enabling the Energy Transition: Infrastructure Requirements and Impacts on Economic Development. A case study from Sydney Australia

Dr. Marlene Kanga AO FTSE FREng

WFEO President, 2017-2019
Non-Executive Director Endeavour Energy (2023 onwards)

4th March 2024
Chair and Non-Executive Director of large organisations in science and engineering in Australia and internationally:

- national and international
- public, private and not-for-profit sectors
- start-ups, collaborative research centres and innovation networks, **Chair Rux Energy**

Professional Organisations:

- President, World Federation of Engineering Organizations, 2017-2019
- Vice President International Network for Women Engineers and Scientists, 2011-2017
- National President Engineers Australia, 2013
- International Fellow Royal Academy of Engineering
- Co-Chair Australian government ELEVATE project, advancing women in STEM in Australia, $42 million project, Australian Academy for Technology and Engineering
- Chair, Institution of Chemical Engineers Safety Centre, advancing process safety engineering globally, 100+ members

Engineering for Sustainable Development
The World Federation of Engineering Organizations (WFEO):

• The leading international body for professional engineering institutions
• Founded in 1968, under the auspices of UNESCO
• 100+ national professional engineering institutions, 12 international and continental/regional professional engineering institutions, representing 30 million engineers
• Co-Chair - Major Science and Technology Group at UN
• Represent engineering at major UN Organisations
A key objective of the World Federation of Engineering Organizations is to advance the UN SDGs through engineering.
The UN Global Sustainable Development Report 2019: Science and Engineering and the Lever and Sustainable Cities as the Pathway

• The UN Global Sustainable Development Report has identified science and engineering as one of four levers to accelerate sustainable development.

• Urban and peri-urban environments have been identified as one of six pathways that can accelerate transformation for sustainable development.

Science and Engineering as the Lever Urban and Peri-urban environments as the transformation pathway

<table>
<thead>
<tr>
<th>LEVERS</th>
<th>Human wellbeing and capabilities</th>
<th>Sustainable and just economies</th>
<th>Energy decarbonisation and access</th>
<th>Food systems and nutrition patterns</th>
<th>Urban and peri-urban development</th>
<th>Global environmental commons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Governance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economy and Finance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual and Collective Action</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science and Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENTRY POINTS FOR TRANSFORMATION

SMART CITIES
Case Study: Implementation of Renewable Energy Networks in New South Wales Australia to supply western Sydney by Endeavour Energy, Acciona and Cobra

Endeavour Energy is responsible for building, maintaining and operating an electricity network that connects 2.6 million people to traditional and renewable energy sources in homes and businesses across Sydney’s Greater West, the Blue Mountains, Southern Highlands, the Illawarra and the South Coast.
Endeavour Energy: By the Numbers (2022)

We serve:
- 2.6 million people
- 25,000 square km across 23 Council areas
- 32,000 life support customers
- 221,000 customers with renewable energy generation
- 20,000 new customers per year in some of the largest and fastest growing regional economies in the state. Over 50% of Sydney’s population will reside in Greater Western Sydney by 2036.

By the numbers:
- 207 major substations
- 20,000+ new customers per year
- 430,000+ power poles
- >25,000 km²
- 60,000+ km of powerlines
- 225,000 streetlights
- 221,000 customers with renewable energy
- 2.6m people
- 1m+ customers
- 32,000 life support customers
- 85% of our area is bushfire prone.

Endeavour Energy: Commitment by leaders to the net zero energy transition

We can’t turn off the coal generation tomorrow, but we all have an ambition to have a transition. There’s a huge shift underway and it’s so exciting to be a part of it.”

- Scott Ryan, Endeavour Energy

Scott Ryan, Chief Asset & Operating Officer, Endeavour Energy

Scott Ryan is responsible for grid transformation, asset management and delivery operations for the safe and reliable supply of electricity to Endeavour Energy’s customers. Scott began his career as a Cadet Engineer in 1989 and held a wide range of positions before assuming his current role in March 2020. He leads a team of 1,100 employees and has led major reform efforts for Endeavour’s workforce and operations. He also established Endeavour’s unregulated business, Ausconnex, which under his leadership has seen revenue grow by as much as 70 per cent annually.

Artist impression of the view to Maroubra energy hub east to south-west.
Endeavour Energy: Commitment to the UN Sustainable Development Goals

- We’re making sustainability part of how we do business

We’ve honed in on the material issues where we can have the most impact, including:

- Climate
- Nature
- Circularity
- Resilience
- Wellbeing
- Inclusion

Key targets for each of these issues are captured in our sustainability strategy (cover page).

Endeavour Energy drives positive change in alignment with the United Nations Sustainable Development Goals:

En{

deavour Energy achieves 5 star GRESB Sustainability Rating

In 2021 and 2022, Endeavour Energy achieved a 5-star rating in the Global Real Estate Sustainability Benchmark (GRESB), the leading worldwide measurement for sustainability performance.

Endeavour Energy is ranked in the top 5% of global GRESB respondents, ranked 27th out of 649 infrastructure assets worldwide, and 2nd out of 8 participating worldwide electricity distribution companies.

Source: GRESB five star rating | Endeavour Energy
Implementing Targets for Sustainability: The Journey

A brighter tomorrow begins with action today

We’re accelerating the renewable revolution, advancing a regenerative economy, and supporting resilient communities. This is how.

2019 2020 2021 2022 2023 2025 2030 2040

- Founding signatory of the Energy Charter
- Reduced emissions 12% in one year
- Launched a stand-alone power system trial
- Endorsed our Reconciliation Action Plan
- Achieved a 5 Star GRESB rating
- Launched the YCUinite wellbeing program
- First community batteries providing shared access to energy storage
- Improved transparency on climate & nature-related risks
- Regenerate 50% more habitat
- Develop social impact programs
- Divert 80% of waste from landfill
- 50% of apprentice & graduate roles to be filled by women
- Nature positive
- 90% employee participation in our wellbeing program
- 40% emissions reduction (scope 1 and 2)
- Aim to connect $10,000 solar systems and batteries
- 100% of new fleet to be zero emissions vehicles

Endeavour will be Climate Positive²
We're creating a modern, clean-energy grid that keeps everyone reliably connected.

State Government of New South Wales Energy Roadmap (2020)

New generation to replace retiring coal-fired power stations

New network infrastructure to deliver energy to consumers

New storage and firming to better respond to our electricity needs and improve reliability of the grid

Source: Electricity Infrastructure Roadmap | NSW Climate and Energy Action
The NSW Electricity Infrastructure Roadmap

Various organisations and stakeholders are working together to deliver the energy transformation in New South Wales.

Sources: Entities delivering the Roadmap | NSW Climate and Energy Action

Engineering for Sustainable Development
Suitable sites for wind energy in the State of New South Wales, Australia and existing and proposed transmission lines.

Figure 3 - Suitable areas for wind energy development.

Source: Embracing the energy transition: NSW energy policy updates - Johnson Winter Slattery (jws.com.au)
Suitable sites for solar energy in the State of New South Wales, Australia and existing and proposed transmission lines.

Source: Embracing the energy transition: NSW energy policy updates - Johnson Winter Slattery (jws.com.au)
Regulatory process for Renewable Energy Zone (REZ) Projects

Regulatory process for Renewable Energy Zone infrastructure projects

1. NSW-wide system planning
 - Consumer Trustee publishes Infrastructure Investment Decision report including the Development Pathway and 10-year plan.
 - Energy Net publishes Network Infrastructure Strategy.
 - Minister declares REZ.

2. Develop network options for REZ
 - Infrastructure Planner assesses network options including relevant stakeholder or community engagement.
 - Optional on request, Consumer Trustee provides advice relating to consumer benefits of network options.
 - Infrastructure Planner nominates Network Operator (potentially via competitive process).
 - Infrastructure Planner submits recommendation to Consumer Trustee.

3. Authorise the REZ network infrastructure project
 - Consumer Trustee considers recommendation from Infrastructure Planner.
 - Consumer Trustee provides authorisation or recommends Minister directive.
 - Consumer Trustee sets maximum capital cost amount and informs Regulator.

4. Make a revenue determination
 - Regulator runs Transmission Efficiency Test (TED).
 - Regulator sets revenue determination for Network Operator to carry out REZ network infrastructure project.
 - Regulator reserves or adjusts revenue determinations.

5. Carry out project
 - Regulator proceeds with REZ network infrastructure project including consumer and operation.

Source: Regulatory framework | NSW Climate and Energy Action

Engineering for Sustainable Development
Location of Government mandated Renewable Energy Zones

NSW Energy Co Renewable Energy Zones

Central West Orana (CWO) Renewable Energy Zone
Central West Orana (CWO) Renewable Energy Zone where Endeavour Energy, Acciona and Cobra will be building transmission lines to customers in Western Sydney.

Sourced: Exploring the energy transition roadmap (essentialenergy.com.au)
“ACEREZ”, is a consortium comprised of Acciona, Cobra and Endeavour Energy as preferred Network Operator for the Renewable Energy Zone (REZ). The consortium ACEREZ has signed on to seek approval to deliver, operate and maintain the REZ transmission network for the next 35 years. This includes new high-capacity transmission lines, energy hubs and related infrastructure in the Central West Orana Region of NSW.

The Central-West Orana REZ transmission project will involve the construction of new transmission lines, energy hubs, switching stations and related infrastructure. The new REZ network infrastructure will enable renewable energy from solar, wind and storage projects to be distributed to energy consumers across the State via the existing NSW transmission network.
The ACEREZ Project for the Central West Orana Region in New South Wales

- Endeavour Energy, Acciona and Cobra, Madrid based companies, have formed ACEREZ, the preferred network operator to deliver the first 6GW capacity renewable energy zone.

- The partnership will design, build, operate and maintain the transmission network for the New South Wales (NSW) Government’s first Renewable Energy Zone in Australia – in the Central West Orana region of New South Wales.

- The new transmission infrastructure will enable generators such as solar and wind farms and energy storage providers in the REZ to connect to the electricity grid at a scale never seen before.

- This will provide a reliable supply of clean, affordable electricity for households and businesses across NSW while helping to meet the State Government's newly legislated Net Zero targets.

- This is a great example of how engineers are leading the energy transition to meet the world’s net zero targets.
Acciona and Cobra Group are Madrid based companies and partners in the ACEREZ Renewable Energy Project

ACCIONA is a Spanish, global company with a business model based on sustainability, building projects for the provision of renewable energy, infrastructure, water and services.

Grupo COBRA is a global company that designs, develops and operates and maintains industrial infrastructure.

See: Corporate Information – GRUPO COBRA

Engineering for Sustainable Development
Social and Economic benefits to rural and regional communities

Town Centre, Gulgong, NSW Australia
Social and Economic Benefits

Healthcare

Together with NSW Health, we are investigating opportunities to attract medical workers such as doctors, nurses, specialists and other healthcare workers to the regions, including key worker accommodation to house medical staff in REZ communities.

Education

We are engaging with the NSW Department of Education to plan for increased demand on schools, childcare and tertiary education in the REZs due to incoming construction workforces and their families.

Justice and emergency services

As the REZs progress to the detailed design and construction phases, we are working with NSW Police, Rural Fire Service (RFS) and other emergency service providers to help understand and mitigate project activities and potential hazards and risks.

Recreation and community facilities

We are considering ways to improve local recreation and community facilities during delivery of the REZs. This will help support increased demand from incoming construction workforces and provide long-term legacy benefits for host communities.

See: NSW Electricity Infrastructure Roadmap - Benefits for Regional NSW.pdf
Social and Economic Benefits

- Jobs
- Schools
- Housing
- Telecommunications
- Roads
- Local business growth

NSW Electricity Infrastructure Roadmap - Benefits for Regional NSW.pdf
Sustainable management of impacts on the community and environment

- **Land use, property and agriculture**, including temporary construction impacts such as traffic, noise and dust.
- **Visual amenity** changes where multiple renewable energy projects are in construction or operation.
- **Biodiversity**, including cumulative impacts to local flora and fauna species and habitats.
- **Aboriginal heritage**, including cumulative impacts to Aboriginal heritage sites, positive impacts from conservation, heritage interpretation and engagement.
- Increased **demand for social services** – housing schools, hospitals and impacts to social cohesion
- **Economic**, such as direct and indirect economic benefits to the region, increased demand for labour and goods and services and temporary population growth during construction.
- **Noise and vibration** from the transmission project and other nearby projects during construction.

Engineering for Sustainable Development
Jobs growth versus environmental impacts

![Chart showing forecast construction and ongoing jobs under the Electricity Infrastructure Roadmap.](chart.png)

Figure 1. Forecast construction and ongoing jobs under the Electricity Infrastructure Roadmap.

Source: NSW Electricity Infrastructure Roadmap - Benefits for Regional NSW.pdf
Engineering Innovation for Electricity Services: Drones for powerline inspections

Engineering Innovation for Sustainable Electricity Services to remote and regional areas, leaving no one behind

Bawley Point, southern New South Wales

- Endeavour Energy commissioned the first community microgrid to power two coastal towns from storms and bushfires, in December 2023.

- This is State’s first community microgrid, which will power around 100 homes in Bawley Point and Kioloa, 250km south of Sydney on Australia’s southeast coast.

- The AU$8 million project is a self-contained energy system, harnessing electricity from renewable sources including rooftop solar, home-based batteries, and a 3MW grid connected battery, strategically positioned between the two communities.

Engineering Innovation for Sustainable Electricity Services to enable the transition to net zero emissions

Substations with Battery and EV charging facilities

- **Endeavour Energy** forecasts that one in four of its customers will be driving an electric vehicle (EV) within the next decade.

- It is partnering with innovative companies to make it easier for customers to choose an electric vehicle as their transport of choice.

- Smart meters are being installed to keep our customers informed and empowered.

- Batteries are being installed close to substations to provide grid stability as the percentage of solar PV generation by customers grows.

Diversity Equity Inclusion for an Inclusive and Ethical Culture

- Systematic approach for a diverse and inclusive workforce
- Track progress with diversity – gender, age, ethnicity, neurodiversity, physical capabilities, First Nations people
- Ensure pay equity, equal opportunities for recruitment, training, development, promotion and recognition
- Achieve 50% diversity by 2030

Engineering for Sustainable Development
Financial Sustainability: Sustainability Bonds Programme

- New South Wales State Government Treasury Corp issues sustainability bonds to support projects that advance the UN SDGs and have social and economic benefits.

- **Endeavour Energy signed a landmark $920 Million Sustainability-Linked Loan in March 2022**, becoming the first known Australian electricity distribution network to access sustainability linked financing.

- Endeavour Energy is the first known electricity distribution network service provider (DNSP) in Australia to access sustainability linked financing.

- The five-year sustainability-linked loan (SLL) facility, can be used for general corporate purposes, however, the pricing of the loan is tied to the Endeavour Energy achieving a set of agreed sustainability performance targets focused on four areas including greenhouse gas emissions reduction, landfill waste diversion, net habitat gain and mental health and wellbeing.

NSW Treasury Corporation Sustainability Bonds Programme - Source: [NSW_Sustainability_Bond_Programme_Annual_Report_2022.pdf](https://www.un.org/sustainabledevelopment/goals)

Aligned to United Nations Sustainable Development Goals

The Sustainable Development Goals (SDGs) were adopted by the United Nations in 2015 as a universal call to action to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace and prosperity. Source: https://www.un.org/sustainabledevelopment/goals
Cities are essential for sustainable development, economic growth and resilience. Sustainable engineering is an important enabler, to accelerate sustainable development in urban and peri-urban environments.

We engineers can make the difference!!

Engineering for Sustainable Development
World Engineering Day for Sustainable Development

Engineering Solutions for a Sustainable World

- 4th March every year
- Proud to lead the proposal as WFEO President 2017-2019
- Declared by UNESCO as an international day
- An opportunity to engage with people, government, policy makers, students on the importance of engineering in our societies
- Encourage young people, boys and girls, to consider engineering as a career for positive change for a better sustainable world
- Its our celebration of engineering!!
See: https://worldengineeringday.net/
Engineering for Sustainable Development

- Participation
- Influence
- Representation
The world’s engineers united in rising to the world’s challenges. For a better, sustainable world.
Ania López
WFEO Executive Vice-President, Consiglio Nazionale degli Ingegneri, Italy
INTRODUCE

The types of renewable energy used in agriculture.
Overview of the 2030 Agenda and the Sustainable Development Goals (SDGs), linked to the agricultural sector.

Importance of renewable energy to achieve sustainable agriculture. The challenges of engineers in the agricultural sector.

Agrivoltaics, an Italian Best Practice, engineering at the service of Agriculture.
Background:

Renewable Energy sources relevant to agriculture: SOLAR, WIND, BIOMASS, HYDROPOWER, and GEOTHERMAL ENERGY

Solar energy involves harnessing sunlight to generate electricity or heat. In agriculture, solar energy can be utilized through photovoltaic (PV) panels to power various operations such as irrigation systems, lighting, and machinery. Solar panels can be installed on rooftops, ground mounts, or even integrated into agricultural infrastructure like greenhouses.

Source: The largest photovoltaic park in Italy in Troia (Foggia)
www.fsmouth.it

Wind energy involves capturing the kinetic energy from wind to generate electricity. Wind turbines, typically installed in windy areas, convert wind energy into mechanical power which is then converted into electricity. In agricultural settings, wind turbines can be used to power farms or provide energy to remote locations where grid connectivity is limited.

Source: The Wind Farm in Italy in Portoscuso (Sardegna)
www.enelgreenpower.com

Biomass energy is derived from organic materials such as crop residues, animal manure, and dedicated energy crops. These materials are converted into biofuels like biogas, bioethanol, and biodiesel through processes such as fermentation, combustion, or gasification. In agriculture, biomass energy can be generated from agricultural residues and waste products, providing an additional revenue stream for farmers while reducing waste.

Source: Electrical or thermal energy from woody biomass in Envie (Cuneo)
www.pezzolato.it
Background:
Renewable Energy sources relevant to agriculture

Hydropower involves capturing the energy of flowing water to generate electricity. It can be harnessed through dams, turbines in rivers or streams, and other water infrastructure. While not as directly applicable to traditional agriculture, hydropower can play a role in providing sustainable energy for irrigation systems and agricultural processing facilities in areas with access to flowing water sources.

Source: The Hydropower Plant in Sentino Sassoferrato (Macerata)
www.ergonbluenergy.org

Geothermal energy utilizes heat from the Earth's crust to generate electricity or provide direct heating. Geothermal power plants tap into hot underground reservoirs of steam or hot water to produce electricity.

While less common in agricultural settings, geothermal energy can be used for greenhouse heating, soil heating for crop production, and other agricultural processes in regions with geothermal resources.

Source: The Nuova Lardello Geothermal Power Plant (Toscana)
www.enel.com
Importance of renewable energy to achieve sustainable agriculture

Sustainable agriculture plays a pivotal role in achieving multiple Sustainable Development Goals (SDGs) outlined in the 2030 Agenda. Here’s how it contributes to various SDGs:

<table>
<thead>
<tr>
<th>SDG</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Zero Hunger</td>
</tr>
<tr>
<td>7</td>
<td>Affordable and Clean Energy</td>
</tr>
<tr>
<td>13</td>
<td>Climate Action</td>
</tr>
<tr>
<td>15</td>
<td>Life on Land</td>
</tr>
</tbody>
</table>

2. **Zero Hunger**
 - Sustainable agriculture ensures food security by promoting efficient and resilient farming practices.
 - By implementing sustainable agricultural techniques, such as crop rotation, integrated pest management, and agroforestry, farmers can enhance productivity and reduce the risk of crop failures.
 - Sustainable agriculture also emphasizes equitable access to resources and markets, which helps alleviate hunger and malnutrition, particularly among vulnerable populations.

7. **Affordable and Clean Energy**
 - Sustainable agriculture promotes the use of renewable energy sources, such as solar, wind, and biomass, to power farming operations.
 - By transitioning from fossil fuel-based energy to clean energy alternatives, agriculture can significantly reduce greenhouse gas emissions and mitigate climate change. Additionally, sustainable agricultural practices, such as conservation tillage and organic farming, enhance soil health and sequester carbon, further contributing to climate action.

13. **Climate Action**
 - Sustainable agriculture adopts climate-smart practices that reduce emissions, enhance resilience to climate change, and contribute to carbon sequestration.
 - Practices such as agroforestry, cover cropping, and conservation agriculture help mitigate greenhouse gas emissions by enhancing soil carbon storage and reducing the need for synthetic fertilizers and pesticides.
 - Sustainable agriculture also promotes adaptive strategies to cope with climate variability, such as drought-resistant crop varieties and efficient water management techniques.

15. **Life on Land**
 - Sustainable agriculture adopts climate-smart practices that reduce emissions, enhance resilience to climate change, and contribute to carbon sequestration. Practices such as agroforestry, cover cropping, and conservation agriculture help mitigate greenhouse gas emissions by enhancing soil carbon storage and reducing the need for synthetic fertilizers and pesticides. Sustainable agriculture also promotes adaptive strategies to cope with climate variability, such as drought-resistant crop varieties and efficient water management techniques.
What may be the challenges of engineers in the agricultural sector?

Engineers in the agricultural sector face a variety of challenges, ranging from technological and environmental to social and economic. Here are some key challenges they may encounter:

- Technology Adoption
- Resource Constraints
- Climate Change and Environmental Sustainability
- Infrastructure Development
- Mechanization and Labor Issues
- Data Management and Digitalization
- Policy and Regulation
- Socioeconomic Factors

Source: PhD researcher Ania Lopez
Encouraging farmers to adopt new technologies can be challenging due to factors such as cost, perceived risks, and lack of awareness or understanding.

Engineers must design technologies that are user-friendly, affordable, and adapted to local conditions to facilitate adoption.
Agricultural engineering projects often operate in resource-constrained environments, where access to materials, equipment, and skilled labor may be limited.

Engineers must find innovative solutions to maximize efficiency and productivity while minimizing the use of resources, scientific research with the application of new technologies will be the key to sustainability in raw material processing and waste.

Nearly 59 million tonnes of food (131 kg/inhabitant) are wasted in the EU each year with estimated market value of €132 billion. Over half of food waste (53%) is generated by households, followed by the processing and manufacturing sector (20%).

Source: UE Commision

Source: Orage Fiber Ferragamo Capsule collection (Italy)
Climate change poses significant challenges to agricultural systems, including unpredictable weather patterns, water scarcity and land degradation, including periods of intense drought and landslides.

Engineers must develop resilient technologies and practices that mitigate climate risks, preserve natural resources and minimize environmental impact, with periodic monitoring and control actions on the state of the areas most prone to landslides, avoiding illegal construction in unsuitable areas with high risk of dismantling and create natural barriers to contain it.
In many rural areas, inadequate infrastructure such as roads, electricity, and water supply hinders agricultural development.

Engineers play a crucial role in designing and implementing infrastructure projects that improve access to markets, inputs, and services for farmers.
As agriculture becomes increasingly mechanized, there is a growing concern about the displacement of rural labor and its impact on livelihoods.

Engineers must balance the benefits of mechanization with the need to create employment opportunities and support rural livelihoods.
The agricultural sector is increasingly reliant on data-driven technologies such as precision agriculture, remote sensing, and digital platforms.

Engineers face challenges related to data collection, management, and analysis, as well as concerns about data privacy and security.

Source: Tesda .gov.ph Beecham Research
Agricultural engineering projects are subject to a complex regulatory environment that can vary widely between regions and countries.

The common agricultural policy: 2023-27

The European Commission has adopted a set of proposals to make the EU's climate, energy, transport and taxation policies fit for reducing net greenhouse gas emissions by at least 55% by 2030, compared to 1990 levels. More information on Delivering the European Green Deal.

Engineers need to navigate regulatory requirements and ensure compliance with relevant standards and guidelines.
Socioeconomic factors such as land tenure systems, market dynamics, and cultural practices can influence the success of engineering interventions in agriculture.

Slow Food is a global movement in which activists, organized in convivia, communities and thematic networks, promote the defense of biodiversity through taste education and advocacy activity, encouraging dialogue between civil society and institutions.

Engineers must consider the social context of their projects and engage with local communities to ensure their needs and priorities are addressed.
During 2022, the photovoltaic park in operation in Italy produced a total of 28,121 GWh of electric energy; compared to the previous year, an increase in production of +12.3% was observed.

Source: GSE/ Energy Services Manager

From the analysis of the monthly trend of 2022 production, the primacy of the central months emerges; July, in particular, it is the month characterized by the highest production (over 3.6 TWh).
The cumulative total of wind power in our country as of 31 December 2022 amounts, net of divestments, to 11,848 MW. The new wind power in 2022 is 30.2% greater than that in 2021, when 404 MW of plants were connected to the grid.

In 3 years, just around 930 MW of wind power has been installed.
<table>
<thead>
<tr>
<th>Technology</th>
<th>PV</th>
<th>Wind</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Production</td>
<td>280 GWh</td>
<td>80.000 MWh</td>
</tr>
<tr>
<td>Capacity</td>
<td>170 MW</td>
<td></td>
</tr>
<tr>
<td>Co2 emissions avoided</td>
<td>130.000 T/ year</td>
<td>130.000 T/ year</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Efficient Power</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42MW</td>
</tr>
</tbody>
</table>
1. Sustainable agriculture is essential to address interconnected challenges such as hunger, poverty, climate change and biodiversity loss.

2. By adopting sustainable practices, agriculture can become a powerful catalyst to achieve multiple sustainable development goals and build a more resilient and equitable future for all, interdisciplinary collaboration, stakeholder involvement and a holistic approach that considers the social, economic and environmental of agricultural development.

3. Engineers play a crucial role in driving innovation and sustainable growth in the agricultural sector.

The largest floating photovoltaic plant in Europe? It is being built in the Alqueva hydroelectric dam basin, Portugal.
What distinguishes people from each other is the strength to make it, or to let fate do it to us.

Fernando Pessoa
1888-1935
Portuguese poet writer

O que distingue as pessoas umas das outras é a força para conseguir, ou para deixar o destino fazer isso connosco.
Pedro Sampaio Nunes
Former Portuguese Secretary of State of Energy and Innovation, Portugal
The Future of Nuclear Energy in Europe

Pedro Sampaio Nunes
High costs for managing renewables intermitency...

Cost of generation, different sources ($/MWh)

- **Nuclear:** 141
- **Coal:** 132
- **Natural gas:** 103
- **Wind + battery:** 93
- **Solar + battery:** 71

Source: BoA Research Investment Committee, Lazard, Entler, et al. (2018). Note: nuclear, coal, and natural gas price estimates from Entler et al. Wind and solar cost estimates are from Lazard’s 2023 Levelized Cost of Energy+ report. Wind + battery and solar + battery use estimates from California’s Independent System Operator (CAISO) and assume a 4-hour lithium-ion battery storage system to account for firming costs. All cost estimates show unsubsidized costs.

LCOE & LFSCOE calculations by energy source

- **LCOE**
 - Full-system LCOE Texas
 - Full-system LCOE Germany

Energy returned on energy invested, by source

Source: BoA Research Investment Committee, D. Welzbach, G. Ruprecht, A. Hulse, K. Czerski, S. Gottlieb, A. Hussain; Red signals EROI below economically viable threshold

BoA GLOBAL RESEARCH

BoA GLOBAL RESEARCH
And huge mining needs due to low energy density of renewables...

Critical minerals demand for clean energy is set to grow by up to three-and-a-half times over the period to 2030 as the world moves through energy transitions.

Mineral requirements for clean energy technologies by scenario

IEA. CC BY 4.0.
Currently largely dominated by China, in extraction, processing and end products ...

Production and processing of many minerals such as lithium, cobalt and some rare earth elements are geographically concentrated, with the top three producers accounting for more than 75% of supplies.
Against a modest growth in mineral demand from nuclear power
And despite a huge investment in renewables, a disappointing performance in emissions...

Carbon Intensity (measured as gCO2/kWh) versus Electricity Production (measured in GWh) for year 2022
Each point represents one of the 8,760 hours of the year

Script: Developed by @Walty and @tdzordonelz
Data Source: ENTSO-E and ElectricityMaps
Recalling the effectiveness of the French nuclear program in reducing fossil fuels dependency ...
Are changing the nuclear landscape in Europe and in the World

Nuclear Alliance: Belgium, Bulgaria, Croatia, Czech Republic, Estonia, Finland, France, Hungary, Netherlands, Poland, Romania, Slovenia, Slovakia, Sweden, United Kingdom as invitee and Italy as observer

European Industrial Alliance on SMALL MODULAR REACTORS

The European Industrial Alliance on Small Modular Reactors (SMRs) aims to facilitate and accelerate the development, demonstration, and deployment of SMRs in Europe by the early 2030s.
Construction time: First concrete to commercial operation of last reactors
Cost of Nuclear: CAPEX from the last export contracts.

Current Export Contracts
(public statements, various scope including fuel and O&M)

<table>
<thead>
<tr>
<th>Country</th>
<th>Reactor</th>
<th>Capacity</th>
<th>Cost</th>
<th>$/kWe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pakistan</td>
<td>HPR-1000 x 1</td>
<td>1 060MW</td>
<td>$3bn</td>
<td>$3 283/kW</td>
</tr>
<tr>
<td>India</td>
<td>VVER-1000 x 4</td>
<td>917MW</td>
<td>$12bn</td>
<td>$3 293/kW</td>
</tr>
<tr>
<td>China</td>
<td>VVER-1200 x 4</td>
<td>1 100MW</td>
<td>$18bn</td>
<td>$4 091/kW</td>
</tr>
<tr>
<td>UAE</td>
<td>APR-1400 x 4</td>
<td>1 337MW</td>
<td>$22bn</td>
<td>$4 114/kW</td>
</tr>
<tr>
<td>Belarus</td>
<td>VVER-1200 x 2</td>
<td>1 110MW</td>
<td>$10bn</td>
<td>$4 505/kW</td>
</tr>
<tr>
<td>Pakistan</td>
<td>HPR-1000 x 2</td>
<td>1 014MW</td>
<td>$10bn</td>
<td>$4 734/kW</td>
</tr>
<tr>
<td>Turkey</td>
<td>VVER-1200 x 4</td>
<td>1 114MW</td>
<td>$22bn</td>
<td>$4 937/kW</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>VVER-1200 x 2</td>
<td>1 080MW</td>
<td>$13bn</td>
<td>$5 856/kW</td>
</tr>
<tr>
<td>Hungary</td>
<td>VVER-1200 x 2</td>
<td>1 100MW</td>
<td>$14bn</td>
<td>$6 364/kW</td>
</tr>
<tr>
<td>Egypt</td>
<td>VVER-1200 x 4</td>
<td>1 100MW</td>
<td>$29bn</td>
<td>$6 534/kW</td>
</tr>
<tr>
<td>UK</td>
<td>EPR x 2</td>
<td>1 650MW</td>
<td>$30bn</td>
<td>$9 061/kW</td>
</tr>
</tbody>
</table>

Financial Times - Opinion Inside Business 27 Jan 2019
“Nuclear is less costly than you think”

- Analysis for the Energy Technologies Institute (an organisation backed by the government and a number of energy companies) looked at 34 delivered nuclear projects round the world.

- First of a Class in USA/EU $9,000-$12,000/kWe
- 15% > $5,500/kWe
- 45% $5,500-$3,500/kWe
- 40% < $3,500/kWe

Note that domestic projects in China, S Korea, Russia and India are quoted as below $3000/kW
Leading to the following levelized costs versus different net discount rates
Today more than 50% of uranium comes from highly reliable sources.

Source: BofA Research Investment Committee, World Nuclear Association
Pressure from the Nuclear Alliance led to nuclear being included in Netzero technologies

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on establishing a framework of measures for strengthening Europe’s net-zero technology products manufacturing ecosystem (Net Zero Industry Act)

Proposal for a

Article 3a

1. The net-zero technologies within the scope of this Regulation shall be:

(a) Solar technologies, including: solar photovoltaic, solar thermal electric and solar thermal technologies;
(b) onshore wind and offshore renewable technologies;
(c) battery and energy storage technologies;
(d) heat pumps and geothermal energy technologies;
(e) hydrogen technologies, including electrolyzers and fuel cells
(f) sustainable biogas and biomethane technologies
(g) carbon capture and storage technologies
(h) electricity grid technologies, including electric charging technologies for transportation and technologies to digitalise the grid
(i) nuclear fission energy technologies, including nuclear fuel cycle technologies;
(j) sustainable alternative fuels technologies
(k) hydropower technologies;
(l) renewable energy technologies, not covered under the previous categories;
Conclusions

• The recent decisions of the European Union will be a strong lever to advance nuclear programs, both for conventional reactors and for fast breeders and SMRs. In almost all European countries the debate on nuclear energy has been lively and conclusive, with growing support from public opinion. Even in Denmark and Norway, the debate on nuclear power is ongoing.

• Countries without nuclear power now have plans to install it, such as Poland and Italy. Countries that had decided to stop or freeze nuclear power have decided to increase their use of this energy source, such as Sweden, France, the Netherlands, Belgium and the United Kingdom.

• Countries where the current governments resist and intend to maintain the current policy of all renewables, such as Germany and Spain, will see their policies change when the opposition takes office. Only countries like Austria, Portugal and Luxembourg maintain a taboo on the subject. In Portugal, for the first time, some parties have included in their electoral programs the need to study this option.
Martin Manuhwa
WFEO Committee in Engineering Capacity Building and ZAIDG Consulting Engineers MD, Zimbabwe
01	Introduction
02	Background and Context
03	Why is Energy Critical?
04	Global Energy Sources
	Energy Potentials
06	Role of Nuclear in Energy Transition
07	Net-Zero and Carbon Neutrality
08	The Clean Energy Challenge
09	Wake-up call to Africa
10	Way Forward
11	Conclusion
What is your Carbon Footprint?
Introduction

Africa is bursting with **possibilities** and a vast endowment of natural resources. The continent’s **renewable energy potential is 50 times greater than the anticipated global electricity demand for the year 2040.**

The continent also has over 40% of the global reserves of key minerals for batteries and hydrogen technologies.

Africa, also, has the largest tracts of arable land, and the continent is young, **with 70% of the people under 30 years of age.** It is time to tap these riches to achieve the aspirations of the people.

“Africa has demonstrated that **climate change, energy access, poverty, development, and conflict are all tightly connected and are different dimensions of the same phenomenon.** I believe by becoming more assertive and pursuing a climate and development agenda through unified approaches, Africa will be able to mitigate the climate emergency and propel itself to prosperity.” - **William S. Ruto** President of the Republic of Kenya Chair of the Committee of African Heads of State and Government on Climate Change
Introduction

- The energy sector is crucial for the socio-economic development of countries, particularly in Africa. However, Africa, as an energy-poor region, needs to balance economic development with access to modern energy forms through a just and equitable energy transition.

- Net-zero transitional pathways in Africa should reflect local resources, viable development paths, and other local-specific requirements.

- There is need for contextualised and tailored strategies for Africa to accelerate renewable energy based on each country's specific needs and resources. Collaboration, political commitment, and long-term planning are essential for a successful transition to clean and sustainable energy in Africa.

- We must prioritise the importance of focusing on a just energy transition hinged on net-zero obligations and carbon neutrality pathways, as well as policies and institutional frameworks for energy efficiency and sufficiency to eliminate energy poverty.

- Regarding Africa's energy transitions, there is a need for urgent support and international cooperation to achieve both climate and development goals.
Introduction

Sustainable Development Goals (SDGs) should be prioritized as key pillars of a just and inclusive energy transition (especially Goal 7 - that ensures affordable, reliable, sustainable, clean and modern energy and universal access for all by 2030).

The earlier phase of the net-zero initiative in developed countries focused on enhancing economic performance and decommissioning thermal power stations due to CO₂ regulations.
• It is important to acknowledge that Africa has abundance in unutilized energy resources and has the smallest share of CO2 emissions globally. Africa's contribution to global CO2 emissions is small compared to other countries.

• As of 2015, China and USA contributed about 44% of the world's CO2 emissions with Russia and India being the top four emitting countries that contributed about 55% of the world's GHG emissions.

• Africa with a total of 54 countries contributed less than 3.8% through to 2020. In 2015, Africa registered a nominal GDP of about US$2.7 trillion (2.84%) of the world GDP for the 3.8% of world GHG emissions.

• This only serves to emphasize the depth of under-development and the associated energy growth headroom from the economic growth potential.

• The underdevelopment and the associated potential for economic growth in Africa make energy access a priority, while also considering and balancing with climate change actions.
Background and Context
A global scan of successful energy policies in Africa have shown the following focus:

(a) Climate Change Mitigation and Adaptation.
(b) Energy Transition, Carbon Neutrality and Net Zero.
(c) Energy Poverty and Access Issues.
(d) Renewable and Green Energy.
(e) Battery Energy Storage Systems (BESS).
(f) Generation, Transmission and Distribution of Safe, Sound, Affordable and Sustainable Energy.
(g) Demand Side Management, Energy Efficiency and Conservation.
(h) Energy Projects Financing.

The above Energy fundamentals involve the principles and goals of a country's energy policies and the methods for implementing them. These are mainly guided by the 17 Sustainable Development Goals (especially SDG 7).
Challenges Affecting the Effective Implementation of Energy policies

In spite of the vital role of the energy sector in the economic and social development of the region, the sector has been faced with several challenges affecting its contribution to sustainable development.

These challenges are:

- **First**, energy accessibility to some segments of the poor and rural population,

- **Secondly**, is the large disparity in per capita energy consumption and energy intensity among those countries, and

- **Thirdly**, the challenge of relying heavily on fossil fuels to energy demand, this challenge further affects Climate Change and delays the attainment of net-zero and carbon neutrality in Africa.

In recognition of the above challenges, countries in the region have been continuously revising their policy framework aiming at promoting sustainable management of the energy sector.
The World at Night! Africa easily the darkest
Why is Energy Critical?

Energy systems are the engine of economic and social development.

The Sustainable Development Goals (SDGs) are a universal call to action to end poverty, protect the planet and ensure that all people enjoy peace and prosperity among others.

SDG 7 aims to "Ensure access to affordable, reliable, sustainable and modern energy for all."

Additionally, access to energy has a direct correlation to HDI (Human Development Index).
Major Options for Reducing Greenhouse Gas Emissions

“Energy efficiency” means economically efficient reductions in energy intensity.

Need to reduce energy intensity,
(the amount of energy used to produce a unit of GDP or to perform some desirable service.)
Sustainable Development (Integrated Approach)

Sustainable Development: is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.

An integrated approach provides for *strategic decisions and actions* aimed at meeting the objectives of sustainable development and poverty eradication. Former UN Secretary-General Ban Ki-moon makes a strong case for integration in his 2014 Synthesis Report on the post-2015 Agenda and SDGs, highlighting the need for *a people-centred and planet-sensitive* agenda and stressing:

“This integration provides the basis for economic models that benefit people and the environment; for environmental solutions that contribute to progress; for social approaches that add to economic dynamism and allow for the preservation and sustainable use of the environmental commons; and for reinforcing human rights, equality, and sustainability. Responding to all goals as a cohesive and integrated whole will be critical to ensuring the transformations needed at scale.”

The complexity, magnitude and the interconnectedness of environmental change does not mean that decision-makers are faced with the stark choice of “*doing everything at once in the name of integrated approaches or doing nothing*” in the face of complexity.
An integrated approach implies that all aspects of sustainable development have to be taken into account when addressing certain issues that may initially seem to be only about one dimension.
Delivery of Agenda 2030 requires us to have an Action Oriented Outlook to plan for the future!
Environmental sustainability for the Sustainable Development Goals in the 2030 Agenda

In September, the 2030 Agenda for Sustainable Development is expected to be adopted at the United Nations summit held in New York. The 17 Sustainable Development Goals build on the eight Millennium Development Goals and aim to end poverty, protect the planet, and ensure peace and prosperity for all.

Related goal

1. **Goal 1**: End poverty in all its forms everywhere
2. **Goal 2**: End hunger, achieve food security and improved nutrition and promote sustainable agriculture
3. **Goal 3**: Ensure healthy lives and promote well-being for all at all ages
4. **Goal 4**: Ensure inclusive and equitable quality education and promote lifelong learning opportunities for all
5. **Goal 5**: Achieve gender equality and empower all women and girls
6. **Goal 6**: Ensure availability and sustainable management of water and sanitation for all
7. **Goal 7**: Ensure access to affordable, reliable, sustainable and modern energy for all
8. **Goal 8**: Promote sustained, inclusive and sustainable economic growth, full and productive employment and decent work for all
9. **Goal 9**: Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation
10. **Goal 10**: Reduce inequality within and among countries
11. **Goal 11**: Make cities and human settlements inclusive, safe, resilient and sustainable
12. **Goal 12**: Ensure sustainable consumption and production patterns
13. **Goal 13**: Take urgent action to combat climate change and its impacts
14. **Goal 14**: Conserve and sustainably use the oceans, seas and marine resources for sustainable development
15. **Goal 15**: Protect, restore and promote sustainable use of terrestrial ecosystems, sustainably manage forests, combat desertification, and halt and reverse land degradation and halt biodiversity loss
16. **Goal 16**: Promote peaceful and inclusive societies for sustainable development, provide access to justice for all and build effective, accountable and inclusive institutions at all levels
17. **Goal 17**: Strengthen the means of implementation and revitalize the global partnership for sustainable development
POVERTY ERADICATION THROUGH AN INCLUSIVE GREEN ECONOMY

- Redefine poverty
- Redefine economic growth
- Green, decent jobs and equal opportunity
- Social protection and
- Universal services

Dinka women in Abyei. Photo credit: M. Niamir-Fuller 1981
Global Energy Sources

- In 2022, **29,165.2 terawatt hours (TWh)** of electricity was generated around the world, an increase of 2.3% from the previous year.

- **Coal still leads the charge when it comes to electricity**, representing 35.4% of global power generation. Over three-quarters of the world’s total coal-generated electricity is consumed in just three countries. **China is the top user of coal**, making up 53.3% of global coal demand, followed by India at 13.6%, and the U.S. at 8.9%.

- **Renewables represented 14.4%** of total electricity generation with an annual growth rate of 14.7%, driven by big gains in solar and wind.

- For **Nuclear power**, **Disruptions at the Zaporizhzhia in Ukraine and shutdowns in France’s nuclear fleet to address corrosion found in the safety injection systems of four reactors led to a 4% drop in global use**, year-over-year.
Energy Potentials:-Renewable Energy

It’s sometimes said that if the Industrial Revolution had taken place in Africa, the world would now run entirely on solar energy.

Africa’s renewable energy resources are diverse and enormous in quantity including:

- Unlimited solar potential (10 TW)
- Abundant hydro (350 GW)
- Wind (59 TW)
- Geothermal energy sources (15 GW)

Source: https://geographical.co.uk/climate-change/african-energy
Example of a Solar Farm (PV Technology)
• The renewable energy momentum in recent years have become synonymous with clean energy revolution. But while we focus on the advanced technologies and innovative designs that drive these solutions, we often overlook what makes it all possible: critical minerals.

• Africa’s vast resources of minerals that are critical for multiple clean energy technologies are set to create new export markets but need to be managed well.

• Africa accounts for over 40% of global reserves of cobalt, manganese and platinum – key minerals for batteries and hydrogen technologies.

• South Africa, Democratic Republic of the Congo and Mozambique have a significant share of global production today, but many other countries may hold undiscovered deposits.

• Lithium deposits are also abundant in Africa especially in the Democratic Republic of Congo and Zimbabwe. We need to value add and play our part in the renewable energy space.
In 1990, nearly half (45 percent) of people in the world without access lived in South Asia.

By 2016 this had shifted significantly: the largest share lived in Sub-Saharan Africa (which is now home to nearly two-thirds of the world population without electricity access).

Accelerated progress will be needed to ensure this number now continues to fall.

Despite the share of the population with electricity rising steadily, population growth meant that the total number of people without access remained at 2016 levels.

Number of people without access to electricity

The definition used in international statistics adopts a very low cutoff for what it means to ‘have access to electricity’. It is defined as having an electricity source that can provide very basic lighting, and charge a phone or power a radio for 4 hours per day.
The Role of Nuclear in Energy Transition

• The role of nuclear in the energy transition, for *decarbonizing both the electric grid and industrial facilities should be enhanced*. This comes after a decade of low investments, accumulating nuclear waste, an aging fleet of reactors, public opposition, and regulatory mandates that stalled nuclear’s growth globally and led to declines in production.

• Meanwhile we note, the nuclear industry has maintained its *safety record, made remarkable progress in fusion and advanced nuclear reactors, and improved operating safety and efficiency*.

• The *Future of Nuclear in the Energy Transition should address how headways in advanced nuclear reactors, fusion, and waste management can overcome the challenges of economic feasibility, efficient and safe waste disposal, and build public and regulatory support for the increased deployment of nuclear energy Africa*.

• African countries or regions should consider *nuclear energy as it generates significant energy without emissions*. This can be either *large scale nuclear plants that can serve regional power pools* or innovative technologies such as *Small Modular Reactors (SMRs), Micro Modular Reactors (MMRs), and Nano Modular Reactors (NMRs)* which are small, flexible, and require less infrastructure compared to large-scale nuclear plants.
In a report released at COP27, the rush for *Africa’s oil and gas has nothing to do with increasing energy access for Africans* with around 89 per cent of the new LNG infrastructure being built for export, mainly to Europe and Asia.

The IEA’s 2022 projection predicted that, even if Africa developed all its known gas reserves, the *continent’s contribution to global emissions would rise from 3% to 3.5%* – the equivalent of a small European economy such as Greece.

The cost of the transition to *Net zero is significant for already prosperous and dominant economies*. What of Africa? We need to create a just framework to energy transition and net-zero transition which leaves no place and no one behind.
Way Forward

• We believe the future of energy is low carbon and to achieve this African countries should first industrialize and then gradually utilize portfolio carbon intensity (PCI) systems that encompasses the full value chain carbon intensity of the products and services used.

• In attempting to address Africa’s energy gap, unconventional solutions and innovation must be employed.

• Africa must be open to all solutions and options available on the table to achieve developmental aspirations that secure the lives and livelihood of its population.

• A comprehensive strategy for the transformation of the African energy system also requires large-scale deployment of advanced coal technologies with carbon capture and storage (CCS) in order to address adequately both climate and energy security concerns.

• Mini grids can be employed in provision of energy to rural areas and small towns while conventional systems with some renewable solutions that will not disrupt stability can be used for cities and industrial areas.

• The role of nuclear in the energy transition, for decarbonizing both the electric grid and industrial facilities should be An all-inclusive global policy framework is required to facilitate the flow of finance, capacity, and technologies between countries.

• The polluter must pay principle and the implementation of the Paris Agreement by all countries will go a long way to improve the carbon footprint of the world.
RECOMMENDING A JUST ENERGY TRANSITION FOR AFRICA

Energy plays a fundamental role across multiple sectors. The choices Africa makes about energy systems will determine many other aspects of development. *Fit for purpose, modern and low-carbon, a new model of energy provision must address a number of important factors. The system must provide accessible, affordable, reliable and sustainable energy to around 600 million Africans that currently lack access to electricity as an overriding priority for development.*

To achieve this goal, Africa will need to move away from outmoded models based on centralised infrastructure, towards more modern, integrated energy solutions that take advantage of Africa’s massive renewable energy potential. The new energy system will embody a number of key principles and approaches that underpin a new African energy vision, including:

- Ensuring *African ownership and agency* in energy initiatives and plans
- *Integrating energy systems design* into wider development objectives and planning
- *Establishing clear policy priorities, such as support for clean cooking and diversification of energy generation and ownership*
- Provide scope for the delivery of energy as a common good and to *genuinely foster energy democratisation*
- *Ensuring stakeholder participation, equity and sufficiency in terms of energy use*
The Sustainable Energy Roadmap with climate stewardship must align the climate change and current developmental aspirations of Agenda 2063 of the Africa we want and should further identify financial, funding, or incentive mechanisms needed to best position Africa to meet the energy challenges of the future.

• We have noted that the net-zero transition model was initiated by developed countries with established and diverse energy systems and that the top four emitting countries (USA, China, Russia and India) contributed about 55% of the world’s GHG emissions compared to Africa (with a total of 54 countries) ‘s 3.5%.

• Africa has stayed very long without meeting its energy needs, there is now a growing awareness among African leaders that the solution to the problem can only be sought when the continent looks at the peculiarity of its problem and take action from that perspective. In that respect all options (energy sources) need to be considered.

• Africa’s energy policies should follow a just pathway informed by international best practices and lessons learned elsewhere.

• “The continent need to have enough energy to industrialize first, before it can fully join the industrialized countries in the ‘energy transition’ journey”. – Engr. Mustafa Shehu – WFEO President.

• “We cannot transition in darkness” – His Excellency Paul Mashatile, the Deputy President, Republic of South Africa.
It can be concluded that some emerging key *considerations for energy transition policies* for Africa include:

- **Security of supply** - ensuring a reliable and affordable supply of energy to meet demand and avoid shortages
- **Environmental sustainability** - minimizing the negative impact of energy production and use on the environment, particularly with regards to climate change
- **Accessibility and affordability** - ensuring that energy is available and affordable to all members of society, including those who are economically disadvantaged
- **Innovation and research** - investing in new technologies and research to develop cleaner, more efficient, and less expensive sources of energy
- **Market competition** - promoting competition among energy providers to ensure fair prices for consumers and encourage innovation and efficiency.
African’s contribution to the emission of Carbon dioxide (CO_2) is by far the lowest with only 3 to 4% of the global emissions and Africa is a continent with vast unexploited energy resources. As Africans, our focus on issues regarding Energy Transition should consider the women in the villages, the vast unemployed, intelligent and vibrant youths and that little boy and girl on the street without food. We should focus on economic and human development of the African continent and again balance with the carbon reduction, net-zero emission or reduction to net-zero emission issues with due care to energy access.
Marie-Line Vaiani
Secretary General, Conseil Français de l’Énergie, France
Mitigation and Adaptation Options across Systems

Rapid and far-reaching transitions across all sectors and systems are necessary to achieve deep and sustained emissions reductions and secure a liveable and sustainable future for all. These system transitions involve a significant upscaling of a wide portfolio of mitigation and adaptation options. Feasible, effective, and low-cost options for mitigation and adaptation are already available, with differences across systems and regions. (high confidence) [4.1, 4.5, 4.6] (Figure SPM.7)

Finance, Technology and International Cooperation

Finance, technology and international cooperation are critical enablers for accelerated climate action. If climate goals are to be achieved, both adaptation and mitigation financing would need to increase many-fold. There is sufficient global capital to close the global investment gaps but there are barriers to redirect capital to climate action. Enhancing technology innovation systems is key to accelerate the widespread adoption of technologies and practices. Enhancing international cooperation is possible through multiple channels. (high confidence) [2.3, 4.8]
Potential contribution to net emission reduction, 2030

Energy supply

Net lifetime cost of options:
- Costs are lower than the reference
- 0–20 (USD per tCO₂-eq)
- 20–50 (USD per tCO₂-eq)
- 50–100 (USD per tCO₂-eq)
- 100–200 (USD per tCO₂-eq)
- Cost not allocated due to high variability or lack of data

Efficient buildings
Fuel efficient vehicles
Electric vehicles
Efficient lighting, appliances and equipment
Public transport and bicycling
Biofuels for transport
Efficient shipping and aviation
Avoid demand for energy services
Onsite renewables

Energy supply

Industry & waste

Transport
Energy Trilemma

WORLD ENERGY TRILEMMA

ENERGY SECURITY
Reflects a nation’s capacity to meet current and future energy demand reliably, withstand and bounce back swiftly from system shocks with minimal disruption to supplies.

ENERGY AFFORDABILITY
Assesses a country’s ability to provide universal access to affordable, fairly priced and abundant energy for domestic and commercial use.

ENVIRONMENTAL SUSTAINABILITY
Represents the transition of a country’s energy system towards mitigating and avoiding potential environmental harm and climate change impacts.
In 2021, the EU produced around 44% of its own energy, while 56% was imported.
Europe, a climate-neutral continent by 2050

Historical and projected sectoral greenhouse gas emissions in the period 2015-2050

*Excluding non-BECCS industrial removals
**Including bioenergy with carbon capture and storage (BECCS)
European Electricity interconnections

Interconnections are key for european electricity market(s)

- 305,000 km of power lines operating at the same frequency (50 Hz), more than 400 interconnections linking nearly 600 million European citizens

- Managed in real time by TSO, interdependence provides security of supply across the continent with each operator having access when needed to power-generation capacities located outside of its borders

Growing electrification, development of renewables, increasing flexibility challenges => development of electricity interconnections are a priority for Europe

141 projects in TYNDP 2022 of ENTSO-E
European gas interconnections
Projected CO2 infrastructures – 2030

Source EU 2024
European H2 interconnection projects

Source European Clean Hydrogen Alliance
Energy interconnections: challenges

RES = Variable Renewable Energy Sources, characterized by their intermittent and weather-dependent nature
Energy market optimizations
Renaissance of European industrial policy
Green Deal Industrial Plan

- Launched 1 February 2023
- Complements the Green Deal and the REPowerEU packages, to support the EU’s ambitions to reduce net greenhouse gas emissions by at least 55% by 2030
- Substantial funding available
- **Four pillars:**
 i) a predictable and simplified regulatory environment
 - Net-Zero Industry Act, including simplified and fast-track permitting
 - Critical Materials Act
 - Reform of electricity market
 ii) speeding up access to funding
 - including relaxing of state aid rules
 iii) enhancing skills
 - Net-Zero Industry Academies
 iv) open trade for resilient supply chains
 - Free Trade Agreements and Clean-Tech Net Zero Industrial partnerships
Renaissance of industrial policy

European industrial Alliances

2024: Facilitate and accelerate the development, demonstration, and deployment of SMRs in Europe by the early 2030s.

2022: Scaling up EU manufacturing of competitive, innovative, and sustainable solar PV products as well as diversifying international PV value chain components and supply raw materials.

2022: boosting production and supply of renewable and low-carbon fuels in the aviation and waterborne sectors

2021: build resilience and strategic autonomy for Europe's rare earth and magnet value chains. Identify investment possibilities in raw materials value chain, while addressing sustainability and social impact.

2020: support large-scale deployment of clean hydrogen technologies by 2030. Promote investments and stimulate clean hydrogen production and use.

2017: creating a competitive and sustainable battery cell manufacturing value chain in Europe
World Engineering Day 2024 | Conference “Energy Transition and Sustainability”

Please consult the photo gallery [here](#). Also, view the video [here](#).